numpy基本函数

在学习python的时候常常需要numpy这个库,每次都是用一个查一个,这个,终于见到一个完整的总结了http://blog.csdn.net/blog_empire/article/details/39298557

一、数组方法

创建数组:arange()创建一维数组;array()创建一维或多维数组,其参数是类似于数组的对象,如列表等

读取数组元素:如a[0],a[0,0]

数组变形:如b=a.reshape(2,3,4)将得到原数组变为2*3*4的三维数组后的数组;或是a.shape=(2,3,4)或a.resize(2,3,4)直接改变数组a的形状

数组组合:水平组合hstack((a,b))或concatenate((a,b),axis=1);垂直组合vstack((a,b))或concatenate((a,b),axis=0);深度组合dstack((a,b))

数组分割(与数组组合相反):分别有hsplit,vsplit,dsplit,split(split与concatenate相对应)

将np数组变为py列表:a.tolist()

数组排序(小到大):列排列np.msort(a),行排列np.sort(a),np.argsort(a)排序后返回下标

复数排序:np.sort_complex(a)按先实部后虚部排序

数组的插入:np.searchsorted(a,b)将b插入原有序数组a,并返回插入元素的索引值

类型转换:如a.astype(int),np的数据类型比py丰富,且每种类型都有转换方法

条件查找,返回满足条件的数组元素的索引值:np.where(条件)

条件查找,返回下标:np.argwhere(条件)

条件查找,返回满足条件的数组元素:np.extract([条件],a)

根据b中元素作为索引,查找a中对应元素:np.take(a,b)一维

数组中最小最大元素的索引:np.argmin(a),np.argmax(a)

多个数组的对应位置上元素大小的比较:np.maximum(a,b,c,…..)返回每个索引位置上的最大值,np.minimum(…….)相反

将a中元素都置为b:a.fill(b)

每个数组元素的指数:np.exp(a)

生成等差行向量:如np.linspace(1,6,10)则得到1到6之间的均匀分布,总共返回10个数

求余:np.mod(a,n)相当于a%n,np.fmod(a,n)仍为求余且余数的正负由a决定

计算平均值:np.mean(a)

计算加权平均值:np.average(a,b),其中b是权重

计算数组的极差:np.pth(a)=max(a)-min(a)

计算方差(总体方差):np.var(a)

标准差:np.std(a)

算术平方根,a为浮点数类型:np.sqrt(a)

对数:np.log(a)

点积(计算两个数组的线性组合):np.dot(a,b),即得到a*b(一维上是对应元素相乘,多维可将a*b视为矩阵乘法

修剪数组,将数组中小于x的数均换为x,大于y的数均换为y:a.clip(x,y)

所有数组元素乘积:a.prod()

数组元素的累积乘积:a.cumprod()

数组元素的符号:np.sign(a),返回数组中各元素的正负符号,用1和-1表示

数组元素分类:np.piecewise(a,[条件],[返回值]),分段给定取值,根据判断条件给元素分类,并返回设定的返回值。

判断两数组是否相等: np.array_equal(a,b)

判断数组元素是否为实数: np.isreal(a)

去除数组中首尾为0的元素:np.trim_zeros(a)

对浮点数取整,但不改变浮点数类型:np.rint(a)

二、数组属性

1.获取数组每一维度的大小:a.shape

2.获取数组维度:a.ndim

3.元素个数:a.size

4.数组元素在内存中的字节数:a.itemsize

5.数组字节数:a.nbytes==a.size*a.itemsize

6.数组元素覆盖:a.flat=1,则a中数组元素都被1覆盖

7.数组转置:a.T

三、矩阵方法

创建矩阵:np.mat(‘…’)通过字符串格式创建,np.mat(a)通过数组创建,也可用matrix或bmat函数创建

创建复合矩阵:np.bmat(‘A B’,’AB’),用A和B创建复合矩阵AB(字符串格式)

创建n*n维单位矩阵:np.eye(n)

矩阵的转置:A.T

矩阵的逆矩阵:A.I

计算协方差矩阵:np.cov(x),np.cov(x,y)

计算矩阵的迹(对角线元素和):a.trace()

相关系数:np.corrcoef(x,y)

给出对角线元素:a.diagonal()

四、多项式

多项式拟合:poly= np.polyfit(x,a,n),拟合点集a得到n级多项式,其中x为横轴长度,返回多项式的系数

多项式求导函数:np.polyder(poly),返回导函数的系数

得到多项式的n阶导函数:多项式.deriv(m = n)

多项式求根:np.roots(poly)

多项式在某点上的值:np.polyval(poly,x[n]),返回poly多项式在横轴点上x[n]上的值

两个多项式做差运算: np.polysub(a,b)

四、线性代数

估计线性模型中的系数:a=np.linalg.lstsq(x,b),有b=a*x

求方阵的逆矩阵:np.linalg.inv(A)

求广义逆矩阵:np.linalg.pinv(A)

求矩阵的行列式:np.linalg.det(A)

解形如AX=b的线性方程组:np.linalg.solve(A,b)

求矩阵的特征值:np.linalg.eigvals(A)

求特征值和特征向量:np.linalg.eig(A)

Svd分解:np.linalg.svd(A)

五、概率分布

产生二项分布的随机数:np.random.binomial(n,p,size=…),其中n,p,size分别是每轮试验次数、概率、轮数

产生超几何分布随机数:np.random.hypergeometric(n1,n2,n,size=…),其中参数意义分别是物件1总量、物件2总量、每次采样数、试验次数

产生N个正态分布的随机数:np.random.normal(均值,标准差,N)

产生N个对数正态分布的随机数:np.random.lognormal(mean,sigma,N)

Matpoltlib简单绘图方法

引入简单绘图的包import matplotlib.pyplot as plt,最后用plt.show()显示图像

基本画图方法:plt.plot(x,y),plt.xlabel(‘x’),plt.ylabel(‘y’),plt.title(‘…’)

子图:plt.subplot(abc),其中abc分别表示子图行数、列数、序号

创建绘图组件的顶层容器:fig = plt.figure()

添加子图:ax = fig.add_subplot(abc)

设置横轴上的主定位器:ax.xaxis.set_major_locator(…)

绘制方图:plt.hist(a,b),a为长方形的左横坐标值,b为柱高

绘制散点图:plt.scatter(x,y,c = ‘..’,s = ..),c表示颜色,s表示大小

添加网格线:plt.grid(True)

添加注释:如ax.annotate(‘x‘, xy=xpoint, textcoords=‘offsetpoints‘,xytext=(-50, 30), arrowprops=dict(arrowstyle="->"))

增加图例:如plt.legend(loc=‘best‘, fancybox=True)

对坐标取对数:横坐标plt.semilogx(),纵坐标plt.semilogy(),横纵同时plt.loglog()

原文地址:https://www.cnblogs.com/cmybky/p/11772506.html

时间: 2024-11-08 23:38:19

numpy基本函数的相关文章

python中的矩阵、多维数组----numpy

1. 引言 最近在将一个算法由matlab转成python,初学python,很多地方还不熟悉,总体感觉就是上手容易,实际上很优雅地用python还是蛮难的.目前为止,觉得就算法仿真研究而言,还是matlab用得特别舒服,可能是比较熟悉的缘故吧.matlab直接集成了很多算法工具箱,函数查询.调用.变量查询等非常方便,或许以后用久了python也会感觉很好用.与python相比,最喜欢的莫过于可以直接选中某段代码执行了,操作方便,python也可以实现,就是感觉不是很方便. 言归正传,做算法要用

42-python中的矩阵、多维数组----numpy

xzcfightingup python中的矩阵.多维数组----numpy 1. 引言 最近在将一个算法由matlab转成python,初学python,很多地方还不熟悉,总体感觉就是上手容易,实际上很优雅地用python还是蛮难的.目前为止,觉得就算法仿真研究而言,还是matlab用得特别舒服,可能是比较熟悉的缘故吧.matlab直接集成了很多算法工具箱,函数查询.调用.变量查询等非常方便,或许以后用久了python也会感觉很好用.与python相比,最喜欢的莫过于可以直接选中某段代码执行了

python数据分析之numpy、matplotlib的使用

5.3 Python的科学计算包 - Numpy numpy(Numerical Python extensions)是一个第三方的Python包,用于科学计算.这个库的前身是1995年就开始开发的一个用于数组运算的库.经过了长时间的发展,基本上成了绝大部分Python科学计算的基础包,当然也包括所有提供Python接口的深度学习框架. numpy在Linux下的安装已经在5.1.2中作为例子讲过,Windows下也可以通过pip,或者到下面网址下载: Obtaining NumPy & Sci

Numpy随机数

Numpy随机数 np.random随机数子库 1: 基本函数 .rand(d0,d1,..dn):创建d0-dn维度的随机数数组,浮点数,范围从0-1,均匀分布 .randn(d0,d1,..dn):功能同上,区别:范围不定,标准正态分布 .randint(low,high,(shape)):根据shape创建随机整数或整数数组,范围是low,high,形状是shape .seed(s):随机数种子,s是给定的种子值,通过设定相同的随机数种子,可以每次生成相同的随机数 import numpy

numpy数据类型dtype转换

这篇文章我们玩玩numpy的数值数据类型转换 导入numpy >>> import numpy as np 一.随便玩玩 生成一个浮点数组 >>> a = np.random.random(4) 看看信息 >>> a array([ 0.0945377 , 0.52199916, 0.62490646, 0.21260126]) >>> a.dtype dtype('float64') >>> a.shape (4,

numpy的random模块

[说明] 翻译自官网的文档. 随机抽样 (numpy.random) 简单的随机数据 rand(d0, d1, ..., dn) 随机值 >>> np.random.rand(3,2) array([[ 0.14022471, 0.96360618], #random [ 0.37601032, 0.25528411], #random [ 0.49313049, 0.94909878]]) #random randn(d0, d1, ..., dn) 返回一个样本,具有标准正态分布.

NumPy基础:数组和失量计算

NumPy : Numerical Python,是高性能科学计算和数据分析的基础包. 部分功能: ndarray:一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组: 用于对整组数据进行快速运算的标准数学函数(无需编写循环): 用于读写磁盘数据的工具以及用于操作内存映射文件的工具: 线性代数.随机数生成以及傅里叶变换功能: 用于集成C.C++.Fortran等语言编写的代码工具: 大部分数据分析应用关注的功能: 用于

【学习】基础知识:数组和矢量计量【Numpy】

Numpy是高性能科学计算和数据分析的基础包.功能如下: ndarray 一个具有矢量算法运算和复杂广播能力的快速且节省空间的多维数组 用于对整组数据进行快速运算的标准数学函数(无需编写循环) 用于读写磁盘数据的工具以及用于操作内存映射文件的工具. 线性代数.随机数生成以及傅里叶变换功能 用于集成由C\C++\Fortran等语言编写的代码的工具 numpy本身并没有提供多么高级的数据分析功能,理解numpy数组以及面向数组的计算将有助于更加高效地使用诸如pandas之类的工具 关注的功能集中在

数据分析之Numpy库入门

1.列表与数组 在python的基础语言部分,我们并没有介绍数组类型,但是像C.Java等语言都是有数组类型的,那python中的列表和数组有何区别呢? 一维数据:都表示一组数据的有序结构 区别: 列表:数据类型可以不同,如:[3.1413,'pi',3.1404,[3.1402,2.34],'3.2376'] 数组:数据类型相同 .如[3.14,34.34,3433.3,343.23] 二维数据:二维数据由多个一维数据构成,是一维数据的集合形式!表格是典型的二维数据! 注意:表格的表头,可以是