java并发系列(九)-----ConcurrentHashMap原理分析(JDK1.7)

数据结构

ConcurrentHashMap是由Segment数组结构和HashEntry数组结构组成。Segment实际继承自可重入锁(ReentrantLock),在ConcurrentHashMap里扮演锁的角色;HashEntry则用于存储键值对数据。一个ConcurrentHashMap里包含一个Segment数组,每个Segment里包含一个HashEntry数组,我们称之为table,每个HashEntry是一个链表结构的元素。

面试常问:

1、 ConcurrentHashMap实现原理是怎么样的或者问ConcurrentHashMap如何在保证高并发下线程安全的同时实现了性能提升?

答:ConcurrentHashMap允许多个修改操作并发进行,其关键在于使用了锁分离技术。它使用了多个锁来控制对hash表的不同部分进行的修改。内部使用段(Segment)来表示这些不同的部分,每个段其实就是一个小的hash table,只要多个修改操作发生在不同的段上,它们就可以并发进行。

初始化做了什么事?

初始化有三个参数
initialCapacity:初始容量大小 ,默认16。
loadFactor:扩容因子,默认0.75,当一个Segment存储的元素数量大于initialCapacity* loadFactor时,该Segment会进行一次扩容。
concurrencyLevel:并发度,默认16。并发度可以理解为程序运行时能够同时更新ConccurentHashMap且不产生锁竞争的最大线程数,实际上就是ConcurrentHashMap中的分段锁个数,即Segment[]的数组长度。如果并发度设置的过小,会带来严重的锁竞争问题;如果并发度设置的过大,原本位于同一个Segment内的访问会扩散到不同的Segment中,CPU cache命中率会下降,从而引起程序性能下降。

构造方法中部分代码解惑:

1、

保证Segment数组的大小,一定为2的幂,例如用户设置并发度为17,则实际Segment数组大小则为32

2、

保证每个Segment中tabel数组的大小,一定为2的幂,初始化的三个参数取默认值时,table数组大小为2

3、

初始化Segment数组,并实际只填充Segment数组的第0个元素。

4、

用于定位元素所在segment。segmentShift表示偏移位数,通过前面的int类型的位的描述我们可以得知,int类型的数字在变大的过程中,低位总是比高位先填满的,为保证元素在segment级别分布的尽量均匀,计算元素所在segment时,总是取hash值的高位进行计算。segmentMask作用就是为了利用位运算中取模的操作:l a % (Math.pow(2,n)) 等价于 a&( Math.pow(2,n)-1)

在get和put操作中,是如何快速定位元素放在哪个位置的?

对于某个元素而言,一定是放在某个segment元素的某个table元素中的,所以在定位上,定位segment:取得key的hashcode值进行一次再散列(通过Wang/Jenkins算法),拿到再散列值后,以再散列值的高位进行取模得到当前元素在哪个segment上。

定位table:同样是取得key的再散列值以后,用再散列值的全部和table的长度进行取模,得到当前元素在table的哪个元素上。

get()

定位segment和定位table后,依次扫描这个table元素下的的链表,要么找到元素,要么返回null。

在高并发下的情况下如何保证取得的元素是最新的?

答:用于存储键值对数据的HashEntry,在设计上它的成员变量value等都是volatile类型的,这样就保证别的线程对value值的修改,get方法可以马上看到。

put()

1、首先定位segment,当这个segment在map初始化后,还为null,由ensureSegment方法负责填充这个segment。

2、 对Segment 加锁

3、定位所在的table元素,并扫描table下的链表,找到时:

没有找到时

扩容操作

Segment 不扩容,扩容下面的table数组,每次都是将数组翻倍

带来的好处

假设原来table长度为4,那么元素在table中的分布是这样的:

扩容后table长度变为8,那么元素在table中的分布变成:

可以看见 hash值为34和56的下标保持不变,而15,23,77的下标都是在原来下标的基础上+4即可,可以快速定位和减少重排次数。

size方法

size的时候进行两次不加锁的统计,两次一致直接返回结果,不一致,重新加锁再次统计

弱一致性

get方法和containsKey方法都是通过对链表遍历判断是否存在key相同的节点以及获得该节点的value。但由于遍历过程中其他线程可能对链表结构做了调整,因此get和containsKey返回的可能是过时的数据,这一点是ConcurrentHashMap在弱一致性上的体现。

原文地址:https://www.cnblogs.com/alimayun/p/12153729.html

时间: 2024-10-07 17:30:39

java并发系列(九)-----ConcurrentHashMap原理分析(JDK1.7)的相关文章

Java并发编程之ConcurrentHashMap原理分析

前言: 集合是编程中最常用的数据结构.而谈到并发,几乎总是离不开集合这类高级数据结构的支持.比如两个线程需要同时访问一个中间临界区(Queue),比如常会用缓存作为外部文件的副本(HashMap).这篇文章主要分析jdk1.5的3种并发集合类型(concurrent,copyonright,queue)中的ConcurrentHashMap,让我们从原理上细致的了解它们,能够让我们在深度项目开发中获益非浅. 在tiger之前,我们使用得最多的数据结构之一就是HashMap和Hashtable.大

Java并发系列[1]----AbstractQueuedSynchronizer源码分析之概要分析

学习Java并发编程不得不去了解一下java.util.concurrent这个包,这个包下面有许多我们经常用到的并发工具类,例如:ReentrantLock, CountDownLatch, CyclicBarrier, Semaphore等.而这些类的底层实现都依赖于AbstractQueuedSynchronizer这个类,由此可见这个类的重要性.所以在Java并发系列文章中我首先对AbstractQueuedSynchronizer这个类进行分析,由于这个类比较重要,而且代码比较长,为了

Java并发系列[2]----AbstractQueuedSynchronizer源码分析之独占模式

在上一篇<Java并发系列[1]----AbstractQueuedSynchronizer源码分析之概要分析>中我们介绍了AbstractQueuedSynchronizer基本的一些概念,主要讲了AQS的排队区是怎样实现的,什么是独占模式和共享模式以及如何理解结点的等待状态.理解并掌握这些内容是后续阅读AQS源码的关键,所以建议读者先看完我的上一篇文章再回过头来看这篇就比较容易理解.在本篇中会介绍在独占模式下结点是怎样进入同步队列排队的,以及离开同步队列之前会进行哪些操作.AQS为在独占模

Java并发系列[5]----ReentrantLock源码分析

在Java5.0之前,协调对共享对象的访问可以使用的机制只有synchronized和volatile.我们知道synchronized关键字实现了内置锁,而volatile关键字保证了多线程的内存可见性.在大多数情况下,这些机制都能很好地完成工作,但却无法实现一些更高级的功能,例如,无法中断一个正在等待获取锁的线程,无法实现限定时间的获取锁机制,无法实现非阻塞结构的加锁规则等.而这些更灵活的加锁机制通常都能够提供更好的活跃性或性能.因此,在Java5.0中增加了一种新的机制:Reentrant

java并发包&amp;线程池原理分析&amp;锁的深度化

      java并发包&线程池原理分析&锁的深度化 并发包 同步容器类 Vector与ArrayList区别 1.ArrayList是最常用的List实现类,内部是通过数组实现的,它允许对元素进行快速随机访问.数组的缺点是每个元素之间不能有间隔,当数组大小不满足时需要增加存储能力,就要讲已经有数组的数据复制到新的存储空间中.当从ArrayList的中间位置插入或者删除元素时,需要对数组进行复制.移动.代价比较高.因此,它适合随机查找和遍历,不适合插入和删除. 2.Vector与Arra

Java并发编程之ConcurrentHashMap

ConcurrentHashMap ConcurrentHashMap是一个线程安全的Hash Table,它的主要功能是提供了一组和HashTable功能相同但是线程安全的方法.ConcurrentHashMap可以做到读取数据不加锁,并且其内部的结构可以让其在进行写操作的时候能够将锁的粒度保持地尽量地小,不用对整个ConcurrentHashMap加锁. ConcurrentHashMap的内部结构 ConcurrentHashMap为了提高本身的并发能力,在内部采用了一个叫做Segment

Java并发编程 ReentrantLock 源码分析

ReentrantLock 一个可重入的互斥锁 Lock,它具有与使用 synchronized 方法和语句所访问的隐式监视器锁相同的一些基本行为和语义,但功能更强大. 这个类主要基于AQS(AbstractOwnableSynchronizer)封装的 公平与非公平锁. 所谓公平锁就是指 在多个线程的争用下,这些锁倾向于将访问权授予等待时间最长的线程,换句话说也就是先被锁定的线程首先获得锁. 非公平锁正好相反,解锁时没有固定顺序. 让我们边分析源代码边学习如何使用该类 先来看一下构造参数,默认

java基础系列之ConcurrentHashMap源码分析(基于jdk1.8)

1.前提 在阅读这篇博客之前,希望你对HashMap已经是有所理解的,否则可以参考这篇博客: jdk1.8源码分析-hashMap:另外你对java的cas操作也是有一定了解的,因为在这个类中大量使用到了cas相关的操作来保证线程安全的. 2.概述 ConcurrentHashMap这个类在java.lang.current包中,这个包中的类都是线程安全的.ConcurrentHashMap底层存储数据的结构与1.8的HashMap是一样的,都是数组+链表(或红黑树)的结构.在日常的开发中,我们

Java集合---ConcurrentHashMap原理分析

集合是编程中最常用的数据结构.而谈到并发,几乎总是离不开集合这类高级数据结构的支持.比如两个线程需要同时访问一个中间临界区(Queue),比如常会用缓存作为外部文件的副本(HashMap).这篇文章主要分析jdk1.5的3种并发集合类型(concurrent,copyonright,queue)中的ConcurrentHashMap,让我们从原理上细致的了解它们,能够让我们在深度项目开发中获益非浅. 通过分析Hashtable就知道,synchronized是针对整张Hash表的,即每次锁住整张