数据结构
ConcurrentHashMap是由Segment数组结构和HashEntry数组结构组成。Segment实际继承自可重入锁(ReentrantLock),在ConcurrentHashMap里扮演锁的角色;HashEntry则用于存储键值对数据。一个ConcurrentHashMap里包含一个Segment数组,每个Segment里包含一个HashEntry数组,我们称之为table,每个HashEntry是一个链表结构的元素。
面试常问:
1、 ConcurrentHashMap实现原理是怎么样的或者问ConcurrentHashMap如何在保证高并发下线程安全的同时实现了性能提升?
答:ConcurrentHashMap允许多个修改操作并发进行,其关键在于使用了锁分离技术。它使用了多个锁来控制对hash表的不同部分进行的修改。内部使用段(Segment)来表示这些不同的部分,每个段其实就是一个小的hash table,只要多个修改操作发生在不同的段上,它们就可以并发进行。
初始化做了什么事?
初始化有三个参数
initialCapacity:初始容量大小 ,默认16。
loadFactor:扩容因子,默认0.75,当一个Segment存储的元素数量大于initialCapacity* loadFactor时,该Segment会进行一次扩容。
concurrencyLevel:并发度,默认16。并发度可以理解为程序运行时能够同时更新ConccurentHashMap且不产生锁竞争的最大线程数,实际上就是ConcurrentHashMap中的分段锁个数,即Segment[]的数组长度。如果并发度设置的过小,会带来严重的锁竞争问题;如果并发度设置的过大,原本位于同一个Segment内的访问会扩散到不同的Segment中,CPU cache命中率会下降,从而引起程序性能下降。
构造方法中部分代码解惑:
1、
保证Segment数组的大小,一定为2的幂,例如用户设置并发度为17,则实际Segment数组大小则为32
2、
保证每个Segment中tabel数组的大小,一定为2的幂,初始化的三个参数取默认值时,table数组大小为2
3、
初始化Segment数组,并实际只填充Segment数组的第0个元素。
4、
用于定位元素所在segment。segmentShift表示偏移位数,通过前面的int类型的位的描述我们可以得知,int类型的数字在变大的过程中,低位总是比高位先填满的,为保证元素在segment级别分布的尽量均匀,计算元素所在segment时,总是取hash值的高位进行计算。segmentMask作用就是为了利用位运算中取模的操作:l a % (Math.pow(2,n)) 等价于 a&( Math.pow(2,n)-1)
在get和put操作中,是如何快速定位元素放在哪个位置的?
对于某个元素而言,一定是放在某个segment元素的某个table元素中的,所以在定位上,定位segment:取得key的hashcode值进行一次再散列(通过Wang/Jenkins算法),拿到再散列值后,以再散列值的高位进行取模得到当前元素在哪个segment上。
定位table:同样是取得key的再散列值以后,用再散列值的全部和table的长度进行取模,得到当前元素在table的哪个元素上。
get()
定位segment和定位table后,依次扫描这个table元素下的的链表,要么找到元素,要么返回null。
在高并发下的情况下如何保证取得的元素是最新的?
答:用于存储键值对数据的HashEntry,在设计上它的成员变量value等都是volatile类型的,这样就保证别的线程对value值的修改,get方法可以马上看到。
put()
1、首先定位segment,当这个segment在map初始化后,还为null,由ensureSegment方法负责填充这个segment。
2、 对Segment 加锁
3、定位所在的table元素,并扫描table下的链表,找到时:
没有找到时:
扩容操作
Segment 不扩容,扩容下面的table数组,每次都是将数组翻倍
带来的好处
假设原来table长度为4,那么元素在table中的分布是这样的:
扩容后table长度变为8,那么元素在table中的分布变成:
可以看见 hash值为34和56的下标保持不变,而15,23,77的下标都是在原来下标的基础上+4即可,可以快速定位和减少重排次数。
size方法
size的时候进行两次不加锁的统计,两次一致直接返回结果,不一致,重新加锁再次统计
弱一致性
get方法和containsKey方法都是通过对链表遍历判断是否存在key相同的节点以及获得该节点的value。但由于遍历过程中其他线程可能对链表结构做了调整,因此get和containsKey返回的可能是过时的数据,这一点是ConcurrentHashMap在弱一致性上的体现。
原文地址:https://www.cnblogs.com/alimayun/p/12153729.html