Eigen介绍及简单使用

Eigen是可以用来进行线性代数、矩阵、向量操作等运算的C++库,它里面包含了很多算法。它的License是MPL2。它支持多平台。

Eigen采用源码的方式提供给用户使用,在使用时只需要包含Eigen的头文件即可进行使用。之所以采用这种方式,是因为Eigen采用模板方式实现,由于模板函数不支持分离编译,所以只能提供源码而不是动态库的方式供用户使用。

矩阵的定义:Eigen中关于矩阵类的模板函数中,共有六个模板参数,常用的只有前三个。其前三个参数分别表示矩阵元素的类型、行数和列数。

矩阵定义时可以使用Dynamic来表示矩阵的行列数为未知。

Eigen中无论是矩阵还是数组、向量,无论是静态矩阵还是动态矩阵都提供默认构造函数,也就是定义这些数据结构时都可以不用提供任何参数,其大小均由运行时来确定。矩阵的构造函数中只提供行列数、元素类型的构造参数,而不提供元素值的构造,对于比较小的、固定长度的向量提供初始化元素的定义。

矩阵类型:Eigen中的矩阵类型一般都是用类似MatrixXXX来表示,可以根据该名字来判断其数据类型,比如”d”表示double类型,”f”表示float类型,”i”表示整数,”c”表示复数;Matrix2f,表示的是一个2*2维的,其每个元素都是float类型。

数据存储:Matrix创建的矩阵默认是按列存储,Eigen在处理按列存储的矩阵时会更加高效。如果想修改可以在创建矩阵的时候加入参数,如:

Matrix<int,3, 4, ColMajor> Acolmajor;

Matrix<int,3, 4, RowMajor> Arowmajor;

动态矩阵和静态矩阵:动态矩阵是指其大小在运行时确定,静态矩阵是指其大小在编译时确定。

MatrixXd:表示任意大小的元素类型为double的矩阵变量,其大小只有在运行时被赋值之后才能知道。

Matrix3d:表示元素类型为double大小为3*3的矩阵变量,其大小在编译时就知道。

在Eigen中行优先的矩阵会在其名字中包含有row,否则就是列优先。

Eigen中的向量只是一个特殊的矩阵,其维度为1而已。

矩阵元素的访问:在矩阵的访问中,行索引总是作为第一个参数,Eigen中矩阵、数组、向量的下标都是从0开始。矩阵元素的访问可以通过”()”操作符完成。例如m(2, 3)既是获取矩阵m的第2行第3列元素。

针对向量还提供”[]”操作符,注意矩阵则不可如此使用。

设置矩阵的元素:在Eigen中重载了”<<”操作符,通过该操作符即可以一个一个元素的进行赋值,也可以一块一块的赋值。另外也可以使用下标进行赋值。

重置矩阵大小:当前矩阵的行数、列数、大小可以通过rows()、cols()和size()来获取,对于动态矩阵可以通过resize()函数来动态修改矩阵的大小。注意:(1)、固定大小的矩阵是不能使用resize()来修改矩阵的大小;(2)、resize()函数会析构掉原来的数据,因此调用resize()函数之后将不能保证元素的值不改变;(3)、使用”=”操作符操作动态矩阵时,如果左右两边的矩阵大小不等,则左边的动态矩阵的大小会被修改为右边的大小。

如何选择动态矩阵和静态矩阵:对于小矩阵(一般大小小于16)使用固定大小的静态矩阵,它可以带来比较高的效率;对于大矩阵(一般大小大于32)建议使用动态矩阵。注意:如果特别大的矩阵使用了固定大小的静态矩阵则可能会造成栈溢出的问题。

矩阵和向量的算术运算:在Eigen中算术运算重载了C++的+、-、*

(1)、矩阵的运算:提供+、-、一元操作符”-”、+=、-=;二元操作符+/-,表示两矩阵相加(矩阵中对应元素相加/减,返回一个临时矩阵);一元操作符-表示对矩阵取负(矩阵中对应元素取负,返回一个临时矩阵);组合操作法+=或者-=表示(对应每个元素都做相应操作);矩阵还提供与标量(单一数字)的乘除操作,表示每个元素都与该标量进行乘除操作;

(2)、求矩阵的转置、共轭矩阵、伴随矩阵:可以通过成员函数transpose()、conjugate()、adjoint()来完成。注意:这些函数返回操作后的结果,而不会对原矩阵的元素进行直接操作,如果要让原矩阵进行转换,则需要使用响应的InPlace函数,如transpoceInPlace()等;

(3)、矩阵相乘、矩阵向量相乘:使用操作符*,共有*和*=两种操作符;

(4)、矩阵的块操作:有两种使用方法:

matrix.block(i,j, p, q) : 表示返回从矩阵(i, j)开始,每行取p个元素,每列取q个元素所组成的临时新矩阵对象,原矩阵的元素不变;

matrix.block<p,q>(i, j) :<p, q>可理解为一个p行q列的子矩阵,该定义表示从原矩阵中第(i, j)开始,获取一个p行q列的子矩阵,返回该子矩阵组成的临时矩阵对象,原矩阵的元素不变;

(5)、向量的块操作:

获取向量的前n个元素:vector.head(n);

获取向量尾部的n个元素:vector.tail(n);

获取从向量的第i个元素开始的n个元素:vector.segment(i,n);

Map类:在已经存在的矩阵或向量中,不必拷贝对象,而是直接在该对象的内存上进行运算操作。

1.      从http://eigen.tuxfamily.org/index.php?title=Main_Page下载最新稳定版本3.2.5,解压缩;

2.      新建一个vs2013 TestEigen控制台工程,将Eigen文件所在目录加入到工程属性的C/C++附加包含目录中,这样就可以使用Eigen中的函数了;

3.      TestEigen.cpp文件中的内容为:

#include "stdafx.h"
#include <iostream>

#include <Eigen/Dense>

template <typename T>
static void matrix_mul_matrix(T* p1, int iRow1, int iCol1, T* p2, int iRow2, int iCol2, T* p3)
{
    if (iRow1 != iRow2) return;

    //列优先
    //Eigen::Map< Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> > map1(p1, iRow1, iCol1);
    //Eigen::Map< Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> > map2(p2, iRow2, iCol2);
    //Eigen::Map< Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> > map3(p3, iCol1, iCol2);

    //行优先
    Eigen::Map< Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> > map1(p1, iRow1, iCol1);
    Eigen::Map< Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> > map2(p2, iRow2, iCol2);
    Eigen::Map< Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> > map3(p3, iCol1, iCol2);

    map3 = map1 * map2;
}

int main(int argc, char* argv[])
{
    //1. 矩阵的定义
    Eigen::MatrixXd m(2, 2);
    Eigen::Vector3d vec3d;
    Eigen::Vector4d vec4d(1.0, 2.0, 3.0, 4.0);

    //2. 动态矩阵、静态矩阵
    Eigen::MatrixXd matrixXd;
    Eigen::Matrix3d matrix3d;

    //3. 矩阵元素的访问
    m(0, 0) = 1;
    m(0, 1) = 2;
    m(1, 0) = m(0, 0) + 3;
    m(1, 1) = m(0, 0) * m(0, 1);
    std::cout << m << std::endl << std::endl;

    //4. 设置矩阵的元素
    m << -1.5, 2.4,
        6.7, 2.0;
    std::cout << m << std::endl << std::endl;
    int row = 4;
    int col = 5;
    Eigen::MatrixXf matrixXf(row, col);
    matrixXf << 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20;
    std::cout << matrixXf << std::endl << std::endl;
    matrixXf << Eigen::MatrixXf::Identity(row, col);
    std::cout << matrixXf << std::endl << std::endl;

    //5. 重置矩阵大小
    Eigen::MatrixXd matrixXd1(3, 3);
    m = matrixXd1;
    std::cout << m.rows() << "  " << m.cols() << std::endl << std::endl;

    //6. 矩阵运算
    m << 1, 2, 7,
        3, 4, 8,
        5, 6, 9;
    std::cout << m << std::endl;
    matrixXd1 = Eigen::Matrix3d::Random();
    m += matrixXd1;
    std::cout << m << std::endl << std::endl;
    m *= 2;
    std::cout << m << std::endl << std::endl;
    std::cout << -m << std::endl << std::endl;
    std::cout << m << std::endl << std::endl;

    //7. 求矩阵的转置、共轭矩阵、伴随矩阵
    std::cout << m.transpose() << std::endl << std::endl;
    std::cout << m.conjugate() << std::endl << std::endl;
    std::cout << m.adjoint() << std::endl << std::endl;
    std::cout << m << std::endl << std::endl;
    m.transposeInPlace();
    std::cout << m << std::endl << std::endl;

    //8. 矩阵相乘、矩阵向量相乘
    std::cout << m*m << std::endl << std::endl;
    vec3d = Eigen::Vector3d(1, 2, 3);
    std::cout << m * vec3d << std::endl << std::endl;
    std::cout << vec3d.transpose()*m << std::endl << std::endl;

    //9. 矩阵的块操作
    std::cout << m << std::endl << std::endl;
    std::cout << m.block(1, 1, 2, 2) << std::endl << std::endl;
    std::cout << m.block<1, 2>(0, 0) << std::endl << std::endl;
    std::cout << m.col(1) << std::endl << std::endl;
    std::cout << m.row(0) << std::endl << std::endl;

    //10. 向量的块操作
    Eigen::ArrayXf arrayXf(10);
    arrayXf << 1, 2, 3, 4, 5, 6, 7, 8, 9, 10;
    std::cout << vec3d << std::endl << std::endl;
    std::cout << arrayXf << std::endl << std::endl;
    std::cout << arrayXf.head(5) << std::endl << std::endl;
    std::cout << arrayXf.tail(4) * 2 << std::endl << std::endl;

    //11. 求解矩阵的特征值和特征向量
    Eigen::Matrix2f matrix2f;
    matrix2f << 1, 2, 3, 4;
    Eigen::SelfAdjointEigenSolver<Eigen::Matrix2f> eigenSolver(matrix2f);
    if (eigenSolver.info() == Eigen::Success) {
        std::cout << eigenSolver.eigenvalues() << std::endl << std::endl;
        std::cout << eigenSolver.eigenvectors() << std::endl << std::endl;
    }

    //12. 类Map及动态矩阵的使用
    int array1[4] = { 1, 2, 3, 4 };
    int array2[4] = { 5, 6, 7, 8 };
    int array3[4] = { 0, 0, 0, 0};
    matrix_mul_matrix(array1, 2, 2, array2, 2, 2, array3);
    for (int i = 0; i < 4; i++)
        std::cout << array3[i] << std::endl;

	return 0;
}

参考文献:

1.      http://blog.csdn.net/augusdi/article/details/12907341

2.      http://www.docin.com/p-863098431.html

3.      http://www.360doc.com/content/15/0325/15/21172899_457946100.shtml

4.      http://www.360doc.com/content/15/0413/22/21172899_463003614.shtml

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-11-03 03:33:23

Eigen介绍及简单使用的相关文章

Android反编译工具介绍与简单实用方法

Android反编译工具介绍与简单实用方法 Android反编译的目的无非就是为了看到APK的xml.资源和代码: 得到代码的方式:直接解压APK文件 --> 得到classes.dex文件 --> 使用 dex2jar classes.dex classes.jar生成jar文件 --> [可选的解压jar文件] -->使用XJad或者JDCompiler查看源代码 得到XML的方式: 方式1:直接解压APK文件 --> 通过axmlprinter工具查看XML文件(这种方

进击的Python【第十二章】:mysql介绍与简单操作,sqlachemy介绍与简单应用

进击的Python[第十二章]:mysql介绍与简单操作,sqlachemy介绍与简单应用 一.数据库介绍 什么是数据库? 数据库(Database)是按照数据结构来组织.存储和管理数据的仓库,每个数据库都有一个或多个不同的API用于创建,访问,管理,搜索和复制所保存的数据.我们也可以将数据存储在文件中,但是在文件中读写数据速度相对较慢.所以,现在我们使用关系型数据库管理系统(RDBMS)来存储和管理的大数据量.所谓的关系型数据库,是建立在关系模型基础上的数据库,借助于集合代数等数学概念和方法来

玩转web之servlet(六)---session介绍及简单使用(登录验证中保存信息)

在浏览器与服务器进行交互时,往往需要把涉及到的一些数据保存下来,这时就需要使用cookie或session进行状态管理. 这篇文章先来说说session怎么用,首先在servlet中创建一个session来保存信息,举个例子,在做登陆验证时,如果登陆成功,需要将用户的信息保存到session中,怎么保存呢?下面给出代码: public class Login_Do extends HttpServlet { String order_name = ""; String order_pa

Json.Net的介绍与简单实用(兼容2.0/3.0/3.5/4.5/RT)

本文的前提是你已经熟悉Json,如果您还不知道什么是Json是什么,请自行查看维基百科. 一.Json.Net是什么? Json.Net是一个读写Json效率比较高的.Net框架.Json.Net 使得在.Net环境下使用Json更加简单.通过Linq To JSON可以快速的读写Json,通过JsonSerializer可以序列化你的.Net对象.让你轻松实现.Net中所有类型(对象,基本数据类型 等)和Json的转换. 二.为什么使用Json.Net? 我们知道在.Net中内置了读写Json

(三)AJAX基本介绍和简单实例03

AJAX基本介绍和简单实例03-----Ajax与数据库的动态应用 初始界面: 选择所有用户后显示的界面: 查询姓名为杜森的客户,结果如下: Demo03.html代码如下: <html> <meta http-equiv="content-type" content="text/html" charset="utf-8"/> <head> <style> body { background:#CC

WebRTC介绍及简单应用

WebRTC介绍及简单应用 WebRTC,即Web Real-Time Communication,web实时通信技术.简单地说就是在web浏览器里面引入实时通信,包括音视频通话等. WebRTC实时通信技术介绍 如何使用 媒体介绍 信令 STUN和TURN介绍 对等连接和提议/应答协商 数据通道 NAT和防火墙穿透 简单应用 其它 WebRTC实时通信技术介绍 WebRTC实现了基于网页的语音对话或视频通话,目的是无插件实现web端的实时通信的能力. WebRTC提供了视频会议的核心技术,包括

消息队列介绍、RabbitMQ&amp;Redis的重点介绍与简单应用

消息队列介绍.RabbitMQ.Redis 一.什么是消息队列 这个概念我们百度Google能查到一大堆文章,所以我就通俗的讲下消息队列的基本思路. 还记得原来写过Queue的文章,不管是线程queue还是进程queue他都是一种消息队列.他都是基于生产者消费者模型来处理消息. Python中的进程queue,是用于父进程与子进程,或者同属于一个父进程下的多个子进程之间进行信息交互.注意这种queue只能在同一个python程序下才能用,如果两个python程序,或者Python和别的什么程序,

Apache Commons 工具类介绍及简单使用

Apache Commons包含了很多开源的工具,用于解决平时编程经常会遇到的问题,减少重复劳动.下面是我这几年做开发过程中自己用过的工具类做简单介绍.   组件 功能介绍 BeanUtils 提供了对于JavaBean进行各种操作,克隆对象,属性等等. Betwixt XML与Java对象之间相互转换. Codec 处理常用的编码方法的工具类包 例如DES.SHA1.MD5.Base64等. Collections java集合框架操作. Compress java提供文件打包 压缩类库. C

介绍一个简单的Parser

我们已经学习了怎样创建一个简单的Monad, MaybeMonad, 并且知道了它如何通过在 Bind函数里封装处理空值的逻辑来移除样板式代码. 正如之前所说的,我们可以在Bind函数中封装更复杂的逻辑. 下面给出一个更复杂更典型的Monad例子,一个解析器Monad. 在本篇将要介绍一个解析器,在之后的篇幅里将会把解析器转换成一个 Monad. 首先我们思考解析器要完成什么功能,它接受一个输入,通常是一些文本,然后输出期望的结果. 因此一个CSV解析器将会接受一个文本文件,输出行和列的数据,并