[再寄小读者之数学篇](2014-11-21 关于积和式的一个不等式)

在 Rajendra Bhatia 的 Matrix Analysis 中, Exercise I.5.8 说: Prove that for any matrices $A,B$ we have $$\bex |\per (AB)|^2\leq \per (AA^*)\cdot \per (B^*B). \eex$$ (The corresponding relation for determinants is an easy equality.)

到目前为止, 我还没能证出. 不过得到一个貌似更弱的结论. 请看证明: $$\beex \bea |\per (AB)|^2 &=\sev{\sum_\sigma c_{1\sigma(1)}\cdot c_{n\sigma(n)}}^2\quad\sex{C=AB}\\ &=\sev{ \sum_{\sigma} \sez{\sum_{k_1} a_{1k_1}b_{k_1\sigma(1)} \cdots \sum_{k_n} a_{nk_n}b_{k_n\sigma(n)} }}^2\\ &=\sev{ \sum_{k_1\cdots k_n}\sez{ (a_{1k_1}\cdots a_{nk_n})\cdot \sex{\sum_{\sigma} b_{k_1\sigma(1)}\cdots b_{k_n\sigma(n)}} }}^2\\ &\leq \sum_{k_1\cdots k_n} |a_{1k_1}\cdots a_{nk_n}|^2 \cdot \sum_{k_1\cdots k_n}\sev{ \sum_\sigma | b_{k_1\sigma(1)}\cdots b_{k_n\sigma(n)} }^2\\ &=\sum_{k_1}|a_{1k_1}|^2 \cdots \sum_{k_n}|a_{nk_n}|^2 \cdot \sum_{k_1\cdots k_n} \sex{\sum_\sigma \bar b_{k_1\sigma(1)}\cdots \bar b_{k_n\sigma(n)} \cdot \sum_\tau b_{k_1\tau(1)}\cdots b_{k_n\tau(n)}}\\ &=\tilde a_{11}\cdots \tilde a_{nn} \sum_{\sigma,\tau} \sex{ \sum_{k_1} \bar b_{k_1\sigma(1)}b_{k_1\tau(1)} \cdots \sum_{k_n}\bar b_{k_n\sigma(n)}b_{k_n\tau(n)} }\quad\sex{AA^*=\tilde A}\\ &=\tilde a_{11}\cdots \tilde a_{nn} \sum_{\sigma}\sum_{\tau} \tilde b_{\sigma(1)\tau(1)} \cdots \tilde b_{\sigma(n)\tau(n)}\quad\sex{B^*B=\tilde B}\\ &=n!\cdot \tilde a_{11}\cdots \tilde a_{nn}\cdot \per(B^*B). \eea \eeex$$

时间: 2024-10-20 14:43:33

[再寄小读者之数学篇](2014-11-21 关于积和式的一个不等式)的相关文章

再寄小读者之数学篇[2014.07.01-2014.12.31]

[再寄小读者之数学篇](2014-07-09 多项式的辗转相除与线性变换) 设 $V$ 是由次数不超过 $4$ 的一切实系数一元多项式组成的向量空间. 对于 $V$ 上的任意多项式 $f(x)$, 以 $x^2-1$ 除 $f(x)$ 所得的商式及余式分别为 $q(x)$ 和 $r(x)$, 记 $$\bex f(x)=q(x)(x^2-1)+r(x). \eex$$ 设 $\scrA$ 是 $V$ 到 $V$ 的映射, 使得 $$\bex \scrA(f(x))=r(x). \eex$$ 试证

再寄小读者之数学篇[2014.01.01-2014.06.30]

[再寄小读者之数学篇](2014-06-28 证明级数几乎处处收敛) 设 $f\in L(\bbR)$, 试证: $$\bex \vsm{n}f(n^2x) \eex$$ 在 $\bbR$ 上几乎处处收敛到一 Lebesgue 函数. [再寄小读者之数学篇](2014-06-27 向量公式: The Hall term) $$\bex \n\cdot{\bf b}=0\ra \n\times [(\n\times {\bf b})\times {\bf b}]=\n\times [\n\cdot

[再寄小读者之数学篇](2014-10-08 矩阵对称或反对称的一个充分条件)

设$A\in M_{n}(\mathbb F)$,且对任意的$\alpha,\beta\in\mathbb F^n$ 有$$ \alpha^TA\beta=0\Leftrightarrow\beta^TA\alpha=0 $$ 且$A$不是对称矩阵,证明$A^T=-A$. 证明: [from 龙凤呈祥] 只需说明$a_{ii}=0$且$$ a_{ij}=-a_{ij},i\neq j $$ 由于不对称,不失一般性,不妨设$a_{12}\neq a_{21}$,那么二者不全为零,不妨设$a_{12

[再寄小读者之数学篇](2014-06-14 [四川师范大学 2014 年数学分析考研试题] 积分不等式)

设函数 $f$ 在 $[0,1]$ 上有连续的二阶导数且 $f(0)=f(1)=0$, 但 $f(x)$ 在 $[0,1]$ 上不恒等于零. 证明: $$\bex |f(x)|\leq \cfrac{1}{4}\int_0^1 |f''(x)|\rd x,\quad \forall\ x\in [0,1]. \eex$$ [再寄小读者之数学篇](2014-06-14 [四川师范大学 2014 年数学分析考研试题] 积分不等式),布布扣,bubuko.com

[再寄小读者之数学篇](2014-06-23 Bernstein's inequality)

$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq \sen{D^k f}_{L^p}\leq C2^{jk} \sen{f}_{L^p}; \eex$$ $$\bex \supp \hat u\subset \sed{|\xi|\leq 2^j} \ra \sen{f}_{L^q}\leq C2^{jn\sex{\frac{1}{p}-\frac{

[再寄小读者之数学篇](2014-06-26 Besov space estimates)

(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &\quad s>0,\ q\in [1,\infty],\quad p_1,r_1\in [1,\infty],\ \cfrac{1}{p}=\cfrac{1}{p_1}+\cfrac{1}{p_2}=\cfrac{1}{r_1}+\cfrac{1}{r_2}\\ &\ra \sen{fg

[再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)

$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{\n f}_{W^{1,q}}+\sen{f}_{L^\infty}} }. \eex$$ $$\bex m\geq 3\ra \sen{\n f}_{L^\infty}\leq C\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2} \sex{1+\sen{\n f}_{H^

[再寄小读者之数学篇](2014-06-27 向量公式: The Hall term)

$$\bex \n\cdot{\bf b}=0\ra \n\times [(\n\times {\bf b})\times {\bf b}]=\n\times [\n\cdot ({\bf b}\otimes {\bf b})]. \eex$$ 证明: 右端第一个分量为 $$\beex \bea &\quad \sum_i \p_2(\p_i(b_ib_3))-\p_3(\p_i(b_ib_2))\\ &=\sum_i \p_2(b_i\p_ib_3)-\p_3(b_i\p_ib_2)\\

[再寄小读者之数学篇](2014-06-03 计算两个无穷级数)

(from zhangwuji) \bex \sum\limits_{n=0}^{\infty}\dfrac{n^3+2n+1}{(n^4+n^2+1)n!},\quad \sum\limits_{n=0}^{\infty}\dfrac{1}{(n^4+n^2+1)n!}. \eex 解答: (by wangsb) \beex \bea \sum\limits_{n=0}^{\infty}\dfrac{n^3+2n+1}{(n^4+n^2+1)n!} =&\sum\limits_{n=0}^{\

[再寄小读者之数学篇](2014-05-28 Ladyzhenskaya 不等式)

f∈C∞c(R2)?∥f∥L4≤2√∥f∥1/2L2∥?1f∥1/4L2∥?2f∥1/4L2, f∈C∞c(R3)?∥f∥L4≤23/4∥f∥1/4L2∥?1f∥1/4L2∥?2f∥1/4L2∥?3f∥1/4L2. [再寄小读者之数学篇](2014-05-28 Ladyzhenskaya 不等式),布布扣,bubuko.com