Language: Default Dual Core CPU
Description As more and more computers are equipped with dual core CPU, SetagLilb, the Chief Technology Officer of TinySoft Corporation, decided to update their famous product - SWODNIW. The routine consists of N modules, and each of them should run in a certain core. The costs for all the routines to execute on two cores has been estimated. Let‘s define them as Ai and Bi. Meanwhile, M pairs Input There are two integers in the first line of input data, N and M (1 ≤ N ≤ 20000, 1 ≤ M ≤ 200000) . The next N lines, each contains two integer, Ai and Bi. In the following M lines, each contains three integers: a, b, w. The meaning is that if module a and module b don‘t execute on the same core, you should pay extra w dollars for the data-exchange Output Output only one integer, the minimum total cost. Sample Input 3 1 1 10 2 10 10 3 2 3 1000 Sample Output 13 Source POJ Monthly--2007.11.25, Zhou Dong |
题意:现在有n个模块,两个CPU A和B,每个模块要么在A上运行,要么在B上运行,给出每个模块在A和B机器上运行所需要的费用。接着m行,每行 a,b,w三个数字。表示如果a模块和b模块不在同一个机器上运行的话,需要额外花费w来共享数据。现在要求出运行所有任务最小的花费是多少。
思路:将两个CPU视为源点和汇点,对第i个模块在每个CPU中的耗费Ai和Bi,从源点向顶点i连接一条容量为Ai的弧,从顶点i向汇点连接一条容量为Bi的弧;对于a模块和b模块在不同CPU中运行造成的耗费w,从顶点a向b连容量为w的双向边。求最小割即求最大流。
代码:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <string> #include <map> #include <stack> #include <vector> #include <set> #include <queue> #pragma comment (linker,"/STACK:102400000,102400000") #define maxn 1005 #define MAXN 20005 #define mod 1000000009 #define INF 0x3f3f3f3f #define pi acos(-1.0) #define eps 1e-6 #define lson rt<<1,l,mid #define rson rt<<1|1,mid+1,r #define FRE(i,a,b) for(i = a; i <= b; i++) #define FRL(i,a,b) for(i = a; i < b; i++) #define mem(t, v) memset ((t) , v, sizeof(t)) #define sf(n) scanf("%d", &n) #define sff(a,b) scanf("%d %d", &a, &b) #define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c) #define pf printf #define DBG pf("Hi\n") const int MAXM = 480010; typedef long long ll; using namespace std; struct Edge { int to,next,cap,flow; }edge[MAXM]; int n,m,s,t; int tol; int head[MAXN]; int gap[MAXN],dep[MAXN],pre[MAXN],cur[MAXN]; void init() { tol=0; memset(head,-1,sizeof(head)); } //加边,单向图三个参数,双向图四个参数 void addedge(int u,int v,int w,int rw=0) { edge[tol].to=v; edge[tol].cap=w; edge[tol].next=head[u]; edge[tol].flow=0; head[u]=tol++; edge[tol].to=u; edge[tol].cap=rw; edge[tol].next=head[v]; edge[tol].flow=0; head[v]=tol++; } //输入参数:起点,终点,点的总数 //点的编号没有影响,只要输入点的总数 int sap(int start,int end,int N) { memset(gap,0,sizeof(gap)); memset(dep,0,sizeof(dep)); memcpy(cur,head,sizeof(head)); int u=start; pre[u]=-1; gap[0]=N; int ans=0; while (dep[start]<N) { if (u==end) { int Min=INF; for (int i=pre[u];i!=-1;i=pre[edge[i^1].to]) if (Min>edge[i].cap-edge[i].flow) Min=edge[i].cap-edge[i].flow; for (int i=pre[u];i!=-1;i=pre[edge[i^1].to]) { edge[i].flow+=Min; edge[i^1].flow-=Min; } u=start; ans+=Min; continue; } bool flag=false; int v; for (int i=cur[u];i!=-1;i=edge[i].next) { v=edge[i].to; if (edge[i].cap-edge[i].flow && dep[v]+1==dep[u]) { flag=true; cur[u]=pre[v]=i; break; } } if (flag) { u=v; continue; } int Min=N; for (int i=head[u];i!=-1;i=edge[i].next) if (edge[i].cap-edge[i].flow && dep[edge[i].to]<Min) { Min=dep[edge[i].to]; cur[u]=i; } gap[dep[u]]--; if (!gap[dep[u]]) return ans; dep[u]=Min+1; gap[dep[u]]++; if (u!=start) u=edge[pre[u]^1].to; } return ans; } int main() { int i,j; while (~sff(n,m)) { int a,b,c; init(); s=0;t=n+1; FRE(i,1,n) { sff(a,b); addedge(s,i,a); addedge(i,t,b); } FRE(i,1,m) { sfff(a,b,c); addedge(a,b,c,c); } printf("%d\n",sap(s,t,t+1)); } return 0; } /* 3 1 1 10 2 10 10 3 2 3 1000 */