题意
总共有 $n$ 层楼,在第 $i$ 层花费 $a_i$ 的代价,有 $pi$ 的概率到 $i+1$ 层,否则到 $x_i$($x_i \leq 1$) 层。接下来有 $q$ 次询问,每次询问 $l$ 层到 $j$ 层的期望代价。
分析
这种期望具有可加性,因此,维护一个前缀和 $sum[i]$:从 $1$ 到 $i$ 的期望。
设从 $i$ 到 $i+1$ 的期望代价为 $E$,则有
$E = a_i + (1-\frac{r_i}{s_i})(sum[i]-sum[x_i]+E)$
解得 $E = [s_ia_i + (s_i-r_i)(sum[i]-sum[x_i])]/r_i$
#include <bits/stdc++.h> using namespace std; typedef long long ll; const ll mod = 1e9 + 7; const int maxn = 500000 + 10; ll sum[maxn]; int n, q; ll qpow(ll a, ll b) { ll ret = 1; while(b) { if(b&1) ret = ret * a % mod; a = a *a % mod; b >>= 1; } return ret; } ll inv(ll x) { return qpow(x, mod-2); } //第i层到第i+1层的期望 void getE(ll i, ll ri, ll si, ll ai, ll xi) { ll e = si * ai % mod; e = (e + (si - ri) * (sum[i] - sum[xi]) % mod); e = e * inv(ri) % mod; e = (e + mod) % mod; sum[i+1] = (sum[i] + e) % mod; } int main() { int T; scanf("%d", &T); while(T--) { scanf("%d%d", &n, &q); for(int i = 1;i <= n;i++) { ll ri, si, xi, ai; scanf("%lld%lld%lld%lld", &ri, &si, &xi, &ai); getE(i, ri, si, ai, xi); } for(int i = 0;i < q;i++) { int l, r; scanf("%d%d", &l, &r); printf("%lld\n", (sum[r] - sum[l] + mod) % mod); } } }
参考链接:https://blog.csdn.net/mmk27_word/article/details/99472953
原文地址:https://www.cnblogs.com/lfri/p/11360441.html
时间: 2024-11-06 09:35:17