JDK1.7&1.8源码对比分析【集合】HashMap

前言

JDK1.8源码分析【集合】HashMap文章中,我们分析了HashMap在JDK1.8中新增的特性(引进了红黑树数据结构),但是为什么要进行这个优化呢?这篇文章我们通过对比JDK1.7和1.8来分析优化的原因。

众所周知,HashMap底层是基于 数组 + 链表 的方式实现的,不过在JDK1.7和1.8中具体实现稍有不同。

目录

一、对比分析

1. 1.7版本

2. 1.8版本

总结

一、对比分析

1. 1.7版本

1.7 中的数据结构图:

先来看看1.7中几个比较核心的成员变量:

/**
 * The default initial capacity - MUST be a power of two.
 * 初始桶大小,因为底层是数组,所以这是数组的大小
 */
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

/**
 * The maximum capacity, used if a higher value is implicitly specified
 * by either of the constructors with arguments.
 * MUST be a power of two <= 1<<30.
 * 桶最大值
 */
static final int MAXIMUM_CAPACITY = 1 << 30;

/**
 * The load factor used when none specified in constructor.
 * 默认的负载因子
 */
static final float DEFAULT_LOAD_FACTOR = 0.75f;

/**
 * An empty table instance to share when the table is not inflated.
 */
static final Entry<?,?>[] EMPTY_TABLE = {};

/**
 * The table, resized as necessary. Length MUST Always be a power of two.
 * 真正存放数据的数组
 */
transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;

/**
 * The number of key-value mappings contained in this map.
 * Map存放数量的大小
 */
transient int size;

/**
 * The next size value at which to resize (capacity * load factor).
 * 桶大小,可在初始化时显式指定
 * @serial
 */
// If table == EMPTY_TABLE then this is the initial capacity at which the
// table will be created when inflated.
int threshold;

/**
 * The load factor for the hash table.
 * 负载因子,可在初始化时显式指定
 *
 * @serial
 */
final float loadFactor;

这几个成员变量中,比较有意思的是负载因子。由于给定的HashMap的容量大小是固定的,比如默认初始化:

/**
 * Constructs an empty <tt>HashMap</tt> with the default initial capacity
 * (16) and the default load factor (0.75).
 */
public HashMap() {
    this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
}

/**
 * Constructs an empty <tt>HashMap</tt> with the specified initial
 * capacity and load factor.
 *
 * @param  initialCapacity the initial capacity
 * @param  loadFactor      the load factor
 * @throws IllegalArgumentException if the initial capacity is negative
 *         or the load factor is nonpositive
 */
public HashMap(int initialCapacity, float loadFactor) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                           initialCapacity);
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                           loadFactor);

    this.loadFactor = loadFactor;
    threshold = initialCapacity;
    init();
}

给定的默认容量为 16,负载因子为 0.75。Map 在使用过程中不断的往里面存放数据,当数量达到了 16 * 0.75 = 12 就需要将当前 16 的容量进行扩容,而扩容这个过程涉及到 rehash、复制数据等操作,所以非常消耗性能。因此通常建议能提前预估 HashMap 的大小最好,尽量的减少扩容带来的性能损耗。

根据代码可以看到真正存放数据的是:

transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;

这个数组,接下来看看它是如何实现的:

static class Entry<K,V> implements Map.Entry<K,V> {
    final K key;
    V value;
    Entry<K,V> next;
    int hash;

    /**
     * Creates new entry.
     */
    Entry(int h, K k, V v, Entry<K,V> n) {
        value = v;
        next = n;
        key = k;
        hash = h;
    }

    public final K getKey() {
        return key;
    }

    public final V getValue() {
        return value;
    }

    public final V setValue(V newValue) {
        V oldValue = value;
        value = newValue;
        return oldValue;
    }

    public final boolean equals(Object o) {
        if (!(o instanceof Map.Entry))
            return false;
        Map.Entry e = (Map.Entry)o;
        Object k1 = getKey();
        Object k2 = e.getKey();
        if (k1 == k2 || (k1 != null && k1.equals(k2))) {
            Object v1 = getValue();
            Object v2 = e.getValue();
            if (v1 == v2 || (v1 != null && v1.equals(v2)))
                return true;
        }
        return false;
    }

    public final int hashCode() {
        return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue());
    }

    public final String toString() {
        return getKey() + "=" + getValue();
    }

    /**
     * This method is invoked whenever the value in an entry is
     * overwritten by an invocation of put(k,v) for a key k that‘s already
     * in the HashMap.
     */
    void recordAccess(HashMap<K,V> m) {
    }

    /**
     * This method is invoked whenever the entry is
     * removed from the table.
     */
    void recordRemoval(HashMap<K,V> m) {
    }
}

Entry 是 HashMap 中的一个内部类,从他的成员变量很容易看出:

  • key是写入的键;
  • value是key对应的值;
  • next用于实现链表结构,指向下一个链表节点;
  • hash存放的是当前key的hashCode。

知晓了基本结构,再来看看put、get函数:

put函数

/**
 * Associates the specified value with the specified key in this map.
 * If the map previously contained a mapping for the key, the old
 * value is replaced.
 *
 * @param key key with which the specified value is to be associated
 * @param value value to be associated with the specified key
 * @return the previous value associated with <tt>key</tt>, or
 *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
 *         (A <tt>null</tt> return can also indicate that the map
 *         previously associated <tt>null</tt> with <tt>key</tt>.)
 */
public V put(K key, V value) {
    // 判断当前数组是否需要初始化
    if (table == EMPTY_TABLE) {
        inflateTable(threshold);
    }
    // 如果 key 为空,则 put 一个空值进去
    if (key == null)
        return putForNullKey(value);
    // 根据 key 计算出 hashcode
    int hash = hash(key);
    // 根据计算出的 hashcode 定位出所在桶
    int i = indexFor(hash, table.length);
    // 如果桶是一个链表则需要遍历判断里面的 hashcode、key 是否和传入 key 相等,如果相等则进行覆盖,并返回原来的值
    for (Entry<K,V> e = table[i]; e != null; e = e.next) {
        Object k;
        if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
            V oldValue = e.value;
            e.value = value;
            e.recordAccess(this);
            return oldValue;
        }
    }

    modCount++;
    // 如果桶是空的,说明当前位置没有数据存入;新增一个 Entry 对象写入当前位置
    addEntry(hash, key, value, i);
    return null;
}
/**
 * Adds a new entry with the specified key, value and hash code to
 * the specified bucket.  It is the responsibility of this
 * method to resize the table if appropriate.
 *
 * Subclass overrides this to alter the behavior of put method.
 */
void addEntry(int hash, K key, V value, int bucketIndex) {
    // 判断是否需要扩容
    if ((size >= threshold) && (null != table[bucketIndex])) {
        // 如果需要就进行两倍扩充,并将当前的 key 重新 hash 并定位
        resize(2 * table.length);
        hash = (null != key) ? hash(key) : 0;
        bucketIndex = indexFor(hash, table.length);
    }

    // 将当前位置的桶传入到新建的桶中,如果当前桶有值就会在位置形成链表
    createEntry(hash, key, value, bucketIndex);
}

/**
 * Like addEntry except that this version is used when creating entries
 * as part of Map construction or "pseudo-construction" (cloning,
 * deserialization).  This version needn‘t worry about resizing the table.
 *
 * Subclass overrides this to alter the behavior of HashMap(Map),
 * clone, and readObject.
 */
void createEntry(int hash, K key, V value, int bucketIndex) {
    Entry<K,V> e = table[bucketIndex];
    table[bucketIndex] = new Entry<>(hash, key, value, e);
    size++;
}

get函数

再来看看get函数:

/**
 * Returns the value to which the specified key is mapped,
 * or {@code null} if this map contains no mapping for the key.
 *
 * <p>More formally, if this map contains a mapping from a key
 * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
 * key.equals(k))}, then this method returns {@code v}; otherwise
 * it returns {@code null}.  (There can be at most one such mapping.)
 *
 * <p>A return value of {@code null} does not <i>necessarily</i>
 * indicate that the map contains no mapping for the key; it‘s also
 * possible that the map explicitly maps the key to {@code null}.
 * The {@link #containsKey containsKey} operation may be used to
 * distinguish these two cases.
 *
 * @see #put(Object, Object)
 */
public V get(Object key) {
    if (key == null)
        return getForNullKey();
    Entry<K,V> entry = getEntry(key);

    return null == entry ? null : entry.getValue();
}

/**
 * Returns the entry associated with the specified key in the
 * HashMap.  Returns null if the HashMap contains no mapping
 * for the key.
 */
final Entry<K,V> getEntry(Object key) {
    if (size == 0) {
        return null;
    }

    // 根据 key 计算出 hashcode,然后定位到具体的桶中
    int hash = (key == null) ? 0 : hash(key);
    // 判断该位置是否为链表
    for (Entry<K,V> e = table[indexFor(hash, table.length)];
         e != null;
         e = e.next) {
        Object k;
        // 根据 key、key 的 hashcode 是否相等来返回值
        if (e.hash == hash &&
            ((k = e.key) == key || (key != null && key.equals(k))))
            return e;
    }
    // 啥都没取到就直接返回 null
    return null;
}

2. 1.8版本

不知道通过1.7的实现大家看出需要优化的点没有?

其中一个很明显的地方就是:当 Hash 冲突严重时,在桶上形成的链表会变的越来越长,这样在查询时的效率就会越来越低;时间复杂度为O(N)。

因此 1.8 中重点优化了这个查询效率。

1.8 中的数据结构图:

还是一样,先来看看几个核心的成员变量:

/**
 * The default initial capacity - MUST be a power of two.
 */
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

/**
 * The maximum capacity, used if a higher value is implicitly specified
 * by either of the constructors with arguments.
 * MUST be a power of two <= 1<<30.
 */
static final int MAXIMUM_CAPACITY = 1 << 30;

/**
 * The load factor used when none specified in constructor.
 */
static final float DEFAULT_LOAD_FACTOR = 0.75f;

/**
 * The bin count threshold for using a tree rather than list for a
 * bin.  Bins are converted to trees when adding an element to a
 * bin with at least this many nodes. The value must be greater
 * than 2 and should be at least 8 to mesh with assumptions in
 * tree removal about conversion back to plain bins upon
 * shrinkage.
 * 用于判断是否需要将链表转换为红黑树的阈值
 */
static final int TREEIFY_THRESHOLD = 8;

/**
 * The bin count threshold for untreeifying a (split) bin during a
 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
 * most 6 to mesh with shrinkage detection under removal.
 */
static final int UNTREEIFY_THRESHOLD = 6;

/**
 * The smallest table capacity for which bins may be treeified.
 * (Otherwise the table is resized if too many nodes in a bin.)
 * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
 * between resizing and treeification thresholds.
 */
static final int MIN_TREEIFY_CAPACITY = 64;

/**
 * JDK1.7是HashEntry,1.8修改为Node
 */
transient Node<K,V>[] table;

/**
 * Holds cached entrySet(). Note that AbstractMap fields are used
 * for keySet() and values().
 */
transient Set<Map.Entry<K,V>> entrySet;

/**
 * The number of key-value mappings contained in this map.
 */
transient int size;

/**
 * The number of times this HashMap has been structurally modified
 * Structural modifications are those that change the number of mappings in
 * the HashMap or otherwise modify its internal structure (e.g.,
 * rehash).  This field is used to make iterators on Collection-views of
 * the HashMap fail-fast.  (See ConcurrentModificationException).
 */
transient int modCount;

/**
 * The next size value at which to resize (capacity * load factor).
 *
 * @serial
 */
// (The javadoc description is true upon serialization.
// Additionally, if the table array has not been allocated, this
// field holds the initial array capacity, or zero signifying
// DEFAULT_INITIAL_CAPACITY.)
int threshold;

/**
 * The load factor for the hash table.
 *
 * @serial
 */
final float loadFactor;

Node 的核心组成其实也是和 1.7 中的 HashEntry 一样,存放的都是key、value、hashCode、next 等数据。

再来看看存取数据的put、get函数。

put函数

/**
 * Implements Map.put and related methods
 *
 * @param hash hash for key
 * @param key the key
 * @param value the value to put
 * @param onlyIfAbsent if true, don‘t change existing value
 * @param evict if false, the table is in creation mode.
 * @return previous value, or null if none
 */
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    // 判断当前桶是否为空,空的就需要初始化(resize 中会判断是否进行初始化)
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    // 根据当前 key 的 hashcode 定位到具体的桶中并判断是否为空,为空表明没有 Hash 冲突就直接在当前位置创建一个新桶即可
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    else {
        Node<K,V> e; K k;
        if (p.hash == hash &&
                // 如果当前桶有值( Hash 冲突),那么就要比较当前桶中的 key、key 的 hashcode 与写入的 key 是否相等,相等就赋值给 e
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        // 如果当前桶为红黑树,那就要按照红黑树的方式写入数据
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
            // 如果是个链表,就需要将当前的 key、value 封装成一个新节点写入到当前桶的后面(形成链表)
            for (int binCount = 0; ; ++binCount) {
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    // 判断当前链表的大小是否大于预设的阈值,大于时就要转换为红黑树
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }
                // 如果在遍历过程中找到 key 相同时直接退出遍历
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        // 如果 e != null 就相当于存在相同的 key,那就需要将值覆盖
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    // 判断是否需要进行扩容
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}

get函数

/**
 * Returns the value to which the specified key is mapped,
 * or {@code null} if this map contains no mapping for the key.
 *
 * <p>More formally, if this map contains a mapping from a key
 * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
 * key.equals(k))}, then this method returns {@code v}; otherwise
 * it returns {@code null}.  (There can be at most one such mapping.)
 *
 * <p>A return value of {@code null} does not <i>necessarily</i>
 * indicate that the map contains no mapping for the key; it‘s also
 * possible that the map explicitly maps the key to {@code null}.
 * The {@link #containsKey containsKey} operation may be used to
 * distinguish these two cases.
 *
 * @see #put(Object, Object)
 */
public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

/**
 * Implements Map.get and related methods
 *
 * @param hash hash for key
 * @param key the key
 * @return the node, or null if none
 */
final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    // 将 key hash 之后取得所定位的桶
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        // 判断桶的第一个位置(有可能是链表、红黑树)的 key 是否为查询的 key,是就直接返回 value
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        // 如果第一个不匹配,则判断它的下一个是红黑树还是链表
        if ((e = first.next) != null) {
            if (first instanceof TreeNode)
                // 红黑树就按照树的查找方式返回值
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            // 不然就按照链表的方式遍历匹配返回值
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

从这两个核心方法(get/put)可以看出 1.8 中对大链表做了优化,修改为红黑树之后查询效率直接提高到了O(logn)。

但是 HashMap 原有的问题也都存在,比如在并发场景下使用时容易出现死循环。

final HashMap<String, String> map = new HashMap<String, String>();
for (int i = 0; i < 1000; i++) {
    new Thread(new Runnable() {
        @Override
        public void run() {
            map.put(UUID.randomUUID().toString(), "");
        }
    }).start();
}

但是为什么呢?看过上文的还记得在 HashMap 扩容的时候会调用resize() 方法,就是这里的并发操作容易在一个桶上形成环形链表;这样当获取一个不存在的 key 时,计算出的 index 正好是环形链表的下标就会出现死循环。下一篇将详细介绍HashMap死循环的原因。

还有一个值得注意的是 HashMap 的遍历方式,通常有以下几种:

Iterator<Map.Entry<String, Integer>> entryIterator = map.entrySet().iterator();
while (entryIterator.hasNext()) {
    Map.Entry<String, Integer> next = entryIterator.next();
    System.out.println("key=" + next.getKey() + " value=" + next.getValue());
}

Iterator<String> iterator = map.keySet().iterator();
while (iterator.hasNext()){
    String key = iterator.next();
    System.out.println("key=" + key + " value=" + map.get(key));

}

强烈建议使用第一种 EntrySet 进行遍历。

第一种可以把 key value 同时取出,第二种还得需要通过 key 取一次 value,效率较低。

总结

HashMap无论是 1.7 还是 1.8 其实都能看出 JDK 没有对它做任何的同步操作,所以并发会出问题,甚至出现死循环导致系统不可用。因此 JDK 推出了专项专用的 ConcurrentHashMap ,该类位于java.util.concurrent 包下,专门用于解决并发问题。

原文地址:https://www.cnblogs.com/warehouse/p/9418156.html

时间: 2024-10-30 23:50:28

JDK1.7&1.8源码对比分析【集合】HashMap的相关文章

JDK1.7&amp;1.8源码对比分析【集合】ConcurrentHashMap

前言 在JDK1.7&1.8源码对比分析[集合]HashMap中我们对比分析了JDK1.7和1.8版本的HashMap源码,趁热打铁,这篇文章就来看看JDK1.7和1.8版本的ConcurrentHashMap有哪些区别. 目录 一.对比分析 1. 1.7版本 2. 1.8版本 一.对比分析 1. 1.7版本 先来看看 1.7 的实现,下面是他的结构图: 如上图所示,是由 Segment 数组.HashEntry 组成,和 HashMap 一样,仍然是数组 + 链表. 它的核心成员变量: /**

Java7/8 中 HashMap 和 ConcurrentHashMap源码对比分析

网上关于 HashMap 和 ConcurrentHashMap 的文章确实不少,不过缺斤少两的文章比较多,所以才想自己也写一篇,把细节说清楚说透,尤其像 Java8 中的 ConcurrentHashMap,大部分文章都说不清楚.终归是希望能降低大家学习的成本,不希望大家到处找各种不是很靠谱的文章,看完一篇又一篇,可是还是模模糊糊. 阅读建议:四节基本上可以进行独立阅读,建议初学者可按照 Java7 HashMap -> Java7 ConcurrentHashMap -> Java8 Ha

ConcurrentHashMap 源码详细分析(JDK1.8)

ConcurrentHashMap 源码详细分析(JDK1.8) 1. 概述 <HashMap 源码详细分析(JDK1.8)>:https://segmentfault.com/a/1190000012926722 Java7 整个 ConcurrentHashMap 是一个 Segment 数组,Segment 通过继承 ReentrantLock 来进行加锁,所以每次需要加锁的操作锁住的是一个 segment,这样只要保证每个 Segment 是线程安全的,也就实现了全局的线程安全.所以很

HashMap源码阅读分析(JDK1.8)

HashMap是JDK提供的经典容器之一,最近刚好时间充裕,于是自己看了一遍hashMap的源码实现,不同版本的JDK,HashMap的实现方式有所不同,本文主要针对JDK1.8的源码进行分析,至于各版本实现方式的不同,本文不做讨论,下面直接开始. 一.hash函数分析 map的put方法,首先调用的就是hash函数,返回key的hash值,其函数方法如下: static final int hash(Object key) { int h; return (key == null) ? 0 :

git CVE-2014-9390 验证以及源码对比

一 验证部分 首先在ubuntu下面建立如下工程 mkdir repo cd repo git init mkdir -p .GiT/hooks cp post-checkout .GiT/hooks cat post-checkout 内容如下 #!/bin/sh calc.exe calc open /Applications/Calculator.app/ gnome-calculator 然后将工程提交到git服务器,由于github已经不能提交.Git这种目录,我就自己搭建了一个服务器

RxJava &amp;&amp; Agera 从源码简要分析基本调用流程(2)

版权声明:本文由晋中望原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/124 来源:腾云阁 https://www.qcloud.com/community 接上篇RxJava && Agera 从源码简要分析基本调用流程(1)我们从"1.订阅过程"."2.变换过程"进行分析,下篇文章我们继续分析"3.线程切换过程" 3.线程切换过程 从上文中我们知道了R

JDK1.8源码(七)——java.util.HashMap 类

本篇博客我们来介绍在 JDK1.8 中 HashMap 的源码实现,这也是最常用的一个集合.但是在介绍 HashMap 之前,我们先介绍什么是 Hash表. 1.哈希表 Hash表也称为散列表,也有直接译作哈希表,Hash表是一种根据关键字值(key - value)而直接进行访问的数据结构.也就是说它通过把关键码值映射到表中的一个位置来访问记录,以此来加快查找的速度.在链表.数组等数据结构中,查找某个关键字,通常要遍历整个数据结构,也就是O(N)的时间级,但是对于哈希表来说,只是O(1)的时间

JUC同步器框架AbstractQueuedSynchronizer源码图文分析

JUC同步器框架AbstractQueuedSynchronizer源码图文分析 前提 Doug Lea大神在编写JUC(java.util.concurrent)包的时候引入了java.util.concurrent.locks.AbstractQueuedSynchronizer,Abstract Queued Synchronizer,也就是"基于队列实现的抽象同步器",一般我们称之为AQS.其实Doug Lea大神编写AQS是有严谨的理论基础的,他的个人博客上有一篇论文<

【JDK1.8】 Java小白的源码学习系列:HashMap

目录 Java小白的源码学习系列:HashMap 官方文档解读 基本数据结构 基本源码解读 基本成员变量 构造器 巧妙的tableSizeFor put方法 巧妙的hash方法 JDK1.8的putVal方法 JDK1.8的resize方法 初始化部分 数组搬移部分 Java小白的源码学习系列:HashMap 春节拜年取消,在家花了好多天时间啃一啃HashMap的源码,同样是找了很多很多的资料,有JDK1.7的,也有JDK1.8的,当然本文基于JDK1.8.将所学到的东西进行整理,希望回过头再看