随机抽样一致性算法(RANSAC)转载

这两天看《计算机视觉中的多视图几何》人都看蒙了,转载一些干货看看

转自王先荣 http://www.cnblogs.com/xrwang/archive/2011/03/09/ransac-1.html

作者:王先荣
    本文翻译自维基百科,英文原文地址是:http://en.wikipedia.org/wiki/ransac,如果您英语不错,建议您直接查看原文。
    RANSAC是“RANdom SAmple Consensus(随机抽样一致)”的缩写。它可以从一组包含“局外点”的观测数据集中,通过迭代方式估计数学模型的参数。它是一种不确定的算法——它有一定的概率得出一个合理的结果;为了提高概率必须提高迭代次数。该算法最早由Fischler和Bolles于1981年提出。
    RANSAC的基本假设是:
(1)数据由“局内点”组成,例如:数据的分布可以用一些模型参数来解释;
(2)“局外点”是不能适应该模型的数据;
(3)除此之外的数据属于噪声。
    局外点产生的原因有:噪声的极值;错误的测量方法;对数据的错误假设。
    RANSAC也做了以下假设:给定一组(通常很小的)局内点,存在一个可以估计模型参数的过程;而该模型能够解释或者适用于局内点。

本文内容
1 示例
2 概述
3 算法
4 参数
5 优点与缺点
6 应用
7 参考文献
8 外部链接

一、示例
    一个简单的例子是从一组观测数据中找出合适的2维直线。假设观测数据中包含局内点和局外点,其中局内点近似的被直线所通过,而局外点远离于直线。简单的最小二乘法不能找到适应于局内点的直线,原因是最小二乘法尽量去适应包括局外点在内的所有点。相反,RANSAC能得出一个仅仅用局内点计算出模型,并且概率还足够高。但是,RANSAC并不能保证结果一定正确,为了保证算法有足够高的合理概率,我们必须小心的选择算法的参数。

左图:包含很多局外点的数据集       右图:RANSAC找到的直线(局外点并不影响结果)

二、概述
    RANSAC算法的输入是一组观测数据,一个可以解释或者适应于观测数据的参数化模型,一些可信的参数。
    RANSAC通过反复选择数据中的一组随机子集来达成目标。被选取的子集被假设为局内点,并用下述方法进行验证:
    1.有一个模型适应于假设的局内点,即所有的未知参数都能从假设的局内点计算得出。
    2.用1中得到的模型去测试所有的其它数据,如果某个点适用于估计的模型,认为它也是局内点。
    3.如果有足够多的点被归类为假设的局内点,那么估计的模型就足够合理。
    4.然后,用所有假设的局内点去重新估计模型,因为它仅仅被初始的假设局内点估计过。
    5.最后,通过估计局内点与模型的错误率来评估模型。
    这个过程被重复执行固定的次数,每次产生的模型要么因为局内点太少而被舍弃,要么因为比现有的模型更好而被选用。

三、算法
    伪码形式的算法如下所示:
输入:
data —— 一组观测数据
model —— 适应于数据的模型
n —— 适用于模型的最少数据个数
k —— 算法的迭代次数
t —— 用于决定数据是否适应于模型的阀值
d —— 判定模型是否适用于数据集的数据数目
输出:
best_model —— 跟数据最匹配的模型参数(如果没有找到好的模型,返回null)
best_consensus_set —— 估计出模型的数据点
best_error —— 跟数据相关的估计出的模型错误

iterations = 0
best_model = null
best_consensus_set = null
best_error = 无穷大
while ( iterations < k )
    maybe_inliers = 从数据集中随机选择n个点
    maybe_model = 适合于maybe_inliers的模型参数
    consensus_set = maybe_inliers

for ( 每个数据集中不属于maybe_inliers的点 )
        if ( 如果点适合于maybe_model,且错误小于t )
            将点添加到consensus_set
    if ( consensus_set中的元素数目大于d )
        已经找到了好的模型,现在测试该模型到底有多好
        better_model = 适合于consensus_set中所有点的模型参数
        this_error = better_model究竟如何适合这些点的度量
        if ( this_error < best_error )
            我们发现了比以前好的模型,保存该模型直到更好的模型出现
            best_model =  better_model
            best_consensus_set = consensus_set
            best_error =  this_error
    增加迭代次数
返回 best_model, best_consensus_set, best_error

RANSAC算法的可能变化包括以下几种:
    (1)如果发现了一种足够好的模型(该模型有足够小的错误率),则跳出主循环。这样可能会节约计算额外参数的时间。
    (2)直接从maybe_model计算this_error,而不从consensus_set重新估计模型。这样可能会节约比较两种模型错误的时间,但可能会对噪声更敏感。

四、参数
    我们不得不根据特定的问题和数据集通过实验来确定参数t和d。然而参数k(迭代次数)可以从理论结果推断。当我们从估计模型参数时,用p表示一些迭代过程中从数据集内随机选取出的点均为局内点的概率;此时,结果模型很可能有用,因此p也表征了算法产生有用结果的概率。用w表示每次从数据集中选取一个局内点的概率,如下式所示:
    w = 局内点的数目 / 数据集的数目
    通常情况下,我们事先并不知道w的值,但是可以给出一些鲁棒的值。假设估计模型需要选定n个点,wn是所有n个点均为局内点的概率;1 ? wn是n个点中至少有一个点为局外点的概率,此时表明我们从数据集中估计出了一个不好的模型。 (1 ? wn)k表示算法永远都不会选择到n个点均为局内点的概率,它和1-p相同。因此,
    1 ? p = (1 ? wn)k
    我们对上式的两边取对数,得出
    
    值得注意的是,这个结果假设n个点都是独立选择的;也就是说,某个点被选定之后,它可能会被后续的迭代过程重复选定到。这种方法通常都不合理,由此推导出的k值被看作是选取不重复点的上限。例如,要从上图中的数据集寻找适合的直线,RANSAC算法通常在每次迭代时选取2个点,计算通过这两点的直线maybe_model,要求这两点必须唯一。
    为了得到更可信的参数,标准偏差或它的乘积可以被加到k上。k的标准偏差定义为:
    
五、优点与缺点
    RANSAC的优点是它能鲁棒的估计模型参数。例如,它能从包含大量局外点的数据集中估计出高精度的参数。RANSAC的缺点是它计算参数的迭代次数没有上限;如果设置迭代次数的上限,得到的结果可能不是最优的结果,甚至可能得到错误的结果。RANSAC只有一定的概率得到可信的模型,概率与迭代次数成正比。RANSAC的另一个缺点是它要求设置跟问题相关的阀值。
    RANSAC只能从特定的数据集中估计出一个模型,如果存在两个(或多个)模型,RANSAC不能找到别的模型。

六、应用
    RANSAC算法经常用于计算机视觉,例如同时求解相关问题与估计立体摄像机的基础矩阵。

七、参考文献

八、外部链接

九、后话

本文在翻译的过程中参考了沈乐君的文章《随机抽样一致性算法RANSAC源程序和教程》。Ziv Yaniv已经用C++实现了RANSAC,您可以点击这里下载源程序。

不过,如果时间允许的话,我打算自己动手用C#去实现RANSAC算法,原因有两个:

(1)熟悉算法的最佳途径是自己去实现它;

(2)方便使用.net的同志们利用RANSAC。

感谢您耐心看完我的蹩脚翻译,希望对您有所帮助。

时间: 2024-10-22 11:54:31

随机抽样一致性算法(RANSAC)转载的相关文章

随机抽样一致性算法(RANSAC)示例及源代码--转载

转载自王先荣 http://www.cnblogs.com/xrwang/p/SampleOfRansac.html 作者:王先荣 大约在两年前翻译了<随机抽样一致性算法RANSAC>,在文章的最后承诺写该算法的C#示例程序.可惜光阴似箭,转眼许久才写出来,实在抱歉.本文将使用随机抽样一致性算法来来检测直线和圆,并提供源代码下载. 一.RANSAC检测流程 在这里复述下RANSAC的检测流程,详细的过程见上一篇翻译文章: RANSAC算法的输入是一组观测数据,一个可以解释或者适应于观测数据的参

随机抽样一致性算法(RANSAC)

RANSAC是"RANdom SAmple Consensus(随机抽样一致)"的缩写.它可以从一组包含"局外点"的观测数据集中,通过迭代方式估计数学模型的参数.它是一种不确定的算法--它有一定的概率得出一个合理的结果:为了提高概率必须提高迭代次数.该算法最早由Fischler和Bolles于1981年提出.    RANSAC的基本假设是:(1)数据由"局内点"组成,例如:数据的分布可以用一些模型参数来解释:(2)"局外点"

分布式 一致性Paxos算法(转载)

文章1比较通俗易懂,可以入门,转载地址是http://www.cnblogs.com/linbingdong/p/6253479.html Paxos算法在分布式领域具有非常重要的地位.但是Paxos算法有两个比较明显的缺点:1.难以理解 2.工程实现更难. 网上有很多讲解Paxos算法的文章,但是质量参差不齐.看了很多关于Paxos的资料后发现,学习Paxos最好的资料是论文<Paxos Made Simple>,其次是中.英文版维基百科对Paxos的介绍.本文试图带大家一步步揭开Paxos

[转载] 一致性问题和Raft一致性算法

原文: http://daizuozhuo.github.io/consensus-algorithm/ raft 协议确实比 paxos 协议好懂太多了. 一致性问题 一致性算法是用来解决一致性问题的,那么什么是一致性问题呢? 在分布式系统中,一致性问题(consensus problem)是指对于一组服务器,给定一组操作,我们需要一个协议使得最后它们的结果达成一致. 更详细的解释就是,当其中某个服务器收到客户端的一组指令时,它必须与其它服务器交流以保证所有的服务器都是以同样的顺序收到同样的指

分布式一致性算法——paxos

一.什么是paxos算法 Paxos 算法是分布式一致性算法用来解决一个分布式系统如何就某个值(决议)达成一致的问题. 人们在理解paxos算法是会遇到一些困境,那么接下来,我们带着以下几个问题来学习paxos算法: 1.paxos到底在解决什么问题? 2.paxos到底如何在分布式存储系统中应用? 3.paxos的核心思想是什么? 二.paxos解决了什么问题 分布式的一致性问题其实主要是指分布式系统中的数据一致性问题.所以,为了保证分布式系统的一致性,就要保证分布式系统中的数据是一致的. 在

一致性算法中的节点下限(转)

在众多的分布式一致性算法中,经常需要通过节点的数量满足某种规则来保证算法的正确性,比如Paxos算法,依赖一个”多数派“ 节点的工作的正确性.这类算法的共同目标是容许尽量多的节点失败但又不影响算法的正确性”. 这类问题本质上都抽象为数学上集合之间的逻辑关系,下面我们便从集合的性质入手讨论,为此先引入两个问题: 假设N为一非空结合,n为集合的元素数,M1,M2,...,Mm为N的m个子集,其元素数分别为n1,n2,...,nm,则: 求得M1∩M2∩...∩Mn≠Φ的条件 求得M1∩M2∩...∩

一致性算法--Paxos

分布式一致性算法--Paxos Paxos算法是莱斯利·兰伯特(Leslie Lamport)1990年提出的一种基于消息传递的一致性算法.Paxos算法解决的问题是一个分布式系统如何就某个值(决议)达成一致.在工程实践意义上来说,就是可以通过Paxos实现多副本一致性,分布式锁,名字管理,序列号分配等.比如,在一个分布式数据库系统中,如果各节点的初始状态一致,每个节点执行相同的操作序列,那么他们最后能得到一个一致的状态.为保证每个节点执行相同的命令序列,需要在每一条指令上执行一个“一致性算法”

一致性问题和Raft一致性算法——一致性问题是无法彻底解决的,可以说一个分布式系统可靠性达到99.99…%,但不能说它达到了100%

一致性问题 一致性算法是用来解决一致性问题的,那么什么是一致性问题呢? 在分布式系统中,一致性问题(consensus problem)是指对于一组服务器,给定一组操作,我们需要一个协议使得最后它们的结果达成一致. 更详细的解释就是,当其中某个服务器收到客户端的一组指令时,它必须与其它服务器交流以保证所有的服务器都是以同样的顺序收到同样的指令,这样的话所有的 服务器会产生一致的结果,看起来就像是一台机器一样. 实际生产中一致性算法需要具备以下属性: safety:即不管怎样都不会返回错误的结果

Raft一致性算法

转自 http://blog.csdn.net/cszhouwei/article/details/38374603 Why Not Paxos Paxos算法是莱斯利·兰伯特(LeslieLamport,就是 LaTeX 中的”La”,此人现在在微软研究院)于1990年提出的一种基于消息传递的一致性算法.由于算法难以理解起初并没有引起人们的重视,使Lamport在八年后1998年重新发表到ACM Transactions on Computer Systems上(The Part-TimePa