Max Sum of Max-K-sub-sequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6277 Accepted Submission(s): 2289
Problem Description
Given a circle sequence A[1],A[2],A[3]......A[n]. Circle sequence means the left neighbour of A[1] is A[n] , and the right neighbour of A[n] is A[1].
Now your job is to calculate the max sum of a Max-K-sub-sequence. Max-K-sub-sequence means a continuous non-empty sub-sequence which length not exceed K.
Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases.
Then T lines follow, each line starts with two integers N , K(1<=N<=100000 , 1<=K<=N), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output a line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the minimum start position, if still more than one , output the minimum length of them.
Sample Input
4
6 3
6 -1 2 -6 5 -5
6 4
6 -1 2 -6 5 -5
6 3
-1 2 -6 5 -5 6
6 6
-1 -1 -1 -1 -1 -1
Sample Output
7 1 3
7 1 3
7 6 2
-1 1 1
Author
shǎ崽@HDU
Source
HDOJ Monthly Contest – 2010.06.05
#include<iostream> #include<cstring> #include<cstdio> #include<string> #include<cmath> #include<algorithm> #include<cstdlib> #include<cmath> #include<queue> #include<vector> #include<set> using namespace std; #define INF 100000000 int tt,n,k; int sum[200005],a[200005],hd,ed; int main() { scanf("%d",&tt); while(tt--) { scanf("%d%d",&n,&k); int j=n; sum[0]=0; for(int i=1;i<=n;i++) { scanf("%d",&a[i]); sum[i]=sum[i-1]+a[i]; } for(int i=n+1;i<n+k;i++) { sum[i]=sum[i-1]+a[i-n]; } n=n+k-1; int ans=-INF; deque<int> q; q.clear(); for(int i=1;i<=n;i++) { while(!q.empty()&&sum[i-1]<sum[q.back()])//维护单调性 q.pop_back(); while(!q.empty()&&q.front()<i-k) q.pop_front(); q.push_back(i-1); if(sum[i]-sum[q.front()]>ans) { ans=sum[i]-sum[q.front()]; hd=q.front()+1; ed=i; } } if(ed>j) ed=ed%j; printf("%d %d %d\n",ans,hd,ed); } return 0; }