POJ 1655 Balancing Act(求树的重心--树形DP)

题意:求树的重心的编号以及重心删除后得到的最大子树的节点个数size,如果size相同就选取编号最小的.

思路:随便选一个点把无根图转化成有根图,dfs一遍即可dp出答案

//1348K	125MS	C++	1127B
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
int n;
const int N= 20020;
struct Edge
{
    int v;
    Edge(int _v=0) : v(_v) {};
};
vector<Edge>es[N];
int sumson[N];
int ans,cur;
void dfs(int u,int pa)
{
    int tmp=-1;
    for(int i=0;i<es[u].size();i++)
    {
        int v=es[u][i].v;
        if(v==pa) continue;
        dfs(v,u);
        sumson[u]+=(sumson[v]+1);
        tmp=max(tmp,sumson[v]+1);
    }
    tmp=max(tmp,n-sumson[u]-1);
    if(tmp<ans||(tmp==ans&&u<cur))
    {
        ans=tmp;
        cur=u;
    }
}
void ini()
{
    for(int i=1;i<=n;i++)
        es[i].clear();
    memset(sumson,0,sizeof(sumson));
    ans=0x3f3f3f3f;
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        ini();
        int u,v;
        for(int i=1;i<n;i++)
        {
            scanf("%d%d",&u,&v);
            es[u].push_back(Edge(v));
            es[v].push_back(Edge(u));
        }
        dfs(1,0);
        printf("%d %d\n",cur,ans);
    }
    return 0;

}
时间: 2025-01-03 19:06:18

POJ 1655 Balancing Act(求树的重心--树形DP)的相关文章

poj 1655 Balancing Act 求树的重心【树形dp】

poj 1655 Balancing Act 题意:求树的重心且编号数最小 一棵树的重心是指一个结点u,去掉它后剩下的子树结点数最少. (图片来源: PatrickZhou 感谢博主) 看上面的图就好明白了,不仅要考虑当前结点子树的大小,也要"向上"考虑树的大小. 那么其它就dfs完成就行了,son[] 存以前结点为根的结点个数. 这是用邻接表写: 1 #include<iostream> 2 #include<cstdio> 3 #include<cst

POJ 1655 Balancing Act(求树的重心)

题目大意: 就是要求树的重心,重心的定义就是删除这个点使得森林尽量平衡. 也可以让分治子树的时候使得每颗子树的数量在nlogn以内. 思路分析: son [x] 表示x的子树的数量  不包括自己. balance 表示最大的森林的节点数. 最后我们要让最大的balance 最小. balance = max (balance ,n - 1 - son[x]  , son[j] +1).. #include <cstdio> #include <iostream> #include

poj 1655 Balancing Act 【树的重心】

知识点:树的重心 定义:以这个点为根,那么所有的子树(不算整个树自身)的大小都不超过整个树大小的一半. 性质: 性质 1 :树中所有点到某个点的距离和中,到重心的距离和是最小的,如果有两个距离和,他们的距离和一样. 性质 2 :把两棵树通过某一点相连得到一颗新的树,新的树的重心必然在连接原来两棵树重心的路径上. 性质 3 :一棵树添加或者删除一个节点,树的重心最多只移动一条边的位置. 题目:poj 1655 Balancing Act 题意:给出一颗树,求树的重心点以及重心点删除后中的最大子树.

POJ 1655 Balancing Act(树的重心)

Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14062   Accepted: 5937 Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or m

POJ 1655 Balancing Act (树的重心,常规)

题意:求树的重心,若有多个重心,则输出编号较小者,及其子树中节点最多的数量. 思路: 树的重心:指的是一个点v,在删除点v后,其子树的节点数分别为:u1,u2....,设max(v)为其中的最大值,点v的max(v)是所有点里面最小的,称v为树的重心. 如何求任一重心?按树形来看,max(v)可以由其父亲贡献,也可以由其任一孩子贡献.孩子比较好解决,不就是深搜一遍,然后回溯时统计下数量就行了?而父亲的怎么办?可以知道,点v到其父亲这一叉就是n-sum(v)了,sum(v)指的是以v为根的子树的节

POJ 1655 Balancing Act (树的重心)

题意:求树的重心裸题. 拓展:树的重心可以在树分治时避免退化链时的最坏时间复杂度,提高时间效率. #include<cstdio> #include<cstring> #include<cmath> #include<cstdlib> #include<iostream> #include<algorithm> #include<vector> #include<map> #include<queue&g

POJ 1655 BalanceAct 3107 Godfather (树的重心)(树形DP)

参考网址:http://blog.csdn.net/acdreamers/article/details/16905653 树的重心的定义: 树的重心也叫树的质心.找到一个点,其所有的子树中最大的子树节点数最少,那么这个点就是这棵树的重心,删去重心后,生成的多棵树尽可能平衡. 通常利用树形DP找重心: BalanceAct: http://poj.org/problem?id=1655 题意:给定一棵树,求树的重心的编号以及重心删除后得到的最大子树的节点个数size,如果size相同就选取编号最

POJ 1655 Balancing Act【树的重心】

Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14251   Accepted: 6027 Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or m

poj1655 Balancing Act 求树的重心

http://poj.org/problem?id=1655 Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9072   Accepted: 3765 Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a fo