1009. K-based Numbers
Time limit: 1.0 second
Memory limit: 64 MB
Let’s consider K-based numbers, containing exactly N digits. We define a number to be valid if itsK-based notation doesn’t contain two successive zeros. For example:
- 1010230 is a valid 7-digit number;
- 1000198 is not a valid number;
- 0001235 is not a 7-digit number, it is a 4-digit number.
Given two numbers N and K, you are to calculate an amount of valid K based numbers, containing Ndigits.
You may assume that 2 ≤ K ≤ 10; N ≥ 2; N + K ≤ 18.
Input
The numbers N and K in decimal notation separated by the line break.
Output
The result in decimal notation.
Sample
input | output |
---|---|
2 10 |
90 |
Problem Source: USU Championship 1997
dp[i][0]代表第i位不存在0的情况,dp[i][1]代表第i位存在1的情况。
dp[i][1]=dp[i-1][0]表示在前i-1个数中最后一个数不是0 的情况补0
dp[i][0]=(k-1)*(dp[i-1][0]+dp[i-1][1])表示在前i-1位中无论最后一位是不是0都补1~9的情况
//0.125 3 854 KB import java.math.BigInteger; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner cin = new Scanner(System.in);// 输入 BigInteger dp[][] = new BigInteger[2007][2]; int n, k; n = cin.nextInt(); k = cin.nextInt(); dp[1][0] = (BigInteger.valueOf(k - 1)); dp[1][1] = (BigInteger.valueOf(0)); for (int i = 2; i <= n; i++) { dp[i][0] = (dp[i - 1][0].add(dp[i-1][1])).multiply(BigInteger.valueOf(k-1)); dp[i][1] = (dp[i - 1][0]); } System.out.println(dp[n][0].add(dp[n][1])); } }
时间: 2024-11-11 02:31:21