分布式计算 MapReduce与yarn工作机制

一、第一代hadoop组成与结构

第一代Hadoop,由分布式存储系统HDFS和分布式计算框架MapReduce组成,其中,HDFS由一个NameNode和多个DataNode组成,MapReduce由一个JobTracker和多个TaskTracker组成,对应Hadoop版本为Hadoop 1.x和0.21.X,0.22.x。

1、MapReduce角色分配


Client :作业提交发起者。

JobTracker: 初始化作业,分配作业,与TaskTracker通信,协调整个作业。

TaskTracker:保持JobTracker通信,在分配的数据片段上执行MapReduce任务。

2、MapReduce执行流程

(1)提交作业

在作业提交之前,需要对作业进行配置

程序代码,主要是自己书写的MapReduce程序。

输入输出路径

其他配置,如输出压缩等。

配置完成后,通过JobClinet来提交

(2)作业的初始化

客户端提交完成后,JobTracker会将作业加入队列,然后进行调度,默认的调度方法是FIFO调试方式。

(3)任务的分配

TaskTracker和JobTracker之间的通信与任务的分配是通过心跳机制完成的。

TaskTracker会主动向JobTracker询问是否有作业要做,如果自己可以做,那么就会申请到作业任务,这个任务可以使Map也可能是Reduce任务。

(4)任务的执行

申请到任务后,TaskTracker会做如下事情:

拷贝代码到本地

拷贝任务的信息到本地

启动JVM运行任务

(5)状态与任务的更新

任务在运行过程中,首先会将自己的状态汇报给TaskTracker,然后由TaskTracker汇总告之JobTracker。

任务进度是通过计数器来实现的。

(6)作业的完成

JobTracker是在接受到最后一个任务运行完成后,才会将任务标志为成功。

此时会做删除中间结果等善后处理工作。

二、第二代hadoop组成与结构


第二代Hadoop,为克服Hadoop 1.0中HDFS和MapReduce存在的各种问题而提出的。针对Hadoop 1.0中的单NameNode制约HDFS的扩展性问题,提出了HDFS Federation,它让多个NameNode分管不同的目录进而实现访问隔离和横向扩展;针对Hadoop 1.0中的MapReduce在扩展性和多框架支持方面的不足,提出了全新的资源管理框架YARN(Yet Another Resource Negotiator),它将JobTracker中的资源管理和作业控制功能分开,分别由组件ResourceManager和ApplicationMaster实现,其中,ResourceManager负责所有应用程序的资源分配,而ApplicationMaster仅负责管理一个应用程序。对应Hadoop版本为Hadoop 0.23.x和2.x。

1、 yarn运行架构


YARN 是下一代Hadoop计算平台,如下所示:

在 YARN 架构中,一个全局ResourceManager 以主要后台进程的形式运行,它通常在一台独立机器上运行,在各种竞争的应用程序之间仲裁可用的集群资源。

ResourceManager会追踪集群中有多少可用的活动节点和资源,协调用户提交的哪些应用程序应该在何时获取这些资源。ResourceManager是惟一拥有此信息的进程,所以它可通过某种共享的、安全的、多租户的方式制定分配(或者调度)决策(例如,依据应用程序优先级、队列容量、ACLs、数据位置等)。

在用户提交一个应用程序时,一个称为ApplicationMaster的轻量型进程实例会启动来协调应用程序内的所有任务的执行。这包括监视任务,重新启动失败的任务,推测性地运行缓慢的任务,以及计算应用程序计数器值的总和。这些职责以前是分配给单个 JobTracker来完成的。ApplicationMaster和属于它的应用程序的任务,在受NodeManager控制的资源容器中运行。

NodeManager是TaskTracker的一种更加普通和高效的版本。没有固定数量的 map 和 reduce slots,NodeManager 拥有许多动态创建的资源容器。容器的大小取决于它所包含的资源量,比如内存、CPU、磁盘和网络 IO。目前,仅支持内存和 CPU (YARN-3)。一个节点上的容器数量,由节点资源总量(比如总CPU数和总内存)共同决定。

需要说明的是:ApplicationMaster可在容器内运行任何类型的任务。例如,MapReduce ApplicationMaster请求一个容器来启动map或reduce 任务,而 Giraph ApplicationMaster请求一个容器来运行Giraph任务。

我们还可以实现一个自定义的 ApplicationMaster 来运行特定的任务,进而发明出一种全新的分布式应用程序框架,改变大数据格局。

在YARN中,MapReduce降级为一个分布式应用程序的一个角色(但仍是一个非常流行且有用的角色),现在称为 MRv2。MRv2 是经典MapReduce引擎(称为 MRv1)的重现,运行在YARN之上。

2、YARN可运行任何分布式应用程序

ResourceManager、NodeManager 和容器都不关心应用程序或任务的类型。所有特定于应用程序框架的代码都会转移到ApplicationMaster,以便任何分布式框架都可以受 YARN 支持。

得益于这个一般性的方法,Hadoop YARN集群可以运行许多不同分布式计算模型,例如:MapReduce、Giraph、Storm、Spark、Tez/Impala、MPI等。

3、YARN中提交应用程序

下面讨论在应用程序提交到YARN集群时,ResourceManager、ApplicationMaster、NodeManagers和容器如何相互交互。下图显示了一个例子。

假设用户采用与MRv1中相同的方式键入hadoop jar命令,将应用程序提交到 ResourceManager。ResourceManager维护在集群上运行的应用程序列表,以及每个活动的 NodeManager上的可用资源列表。

ResourceManager 需要确定哪个应用程序接下来应该获得一部分集群资源。该决策受到许多限制,比如队列容量、ACL 和公平性。ResourceManager 使用一个可插拔的 Scheduler。Scheduler 仅执行调度;它管理谁在何时获取集群资源(以容器的形式),但不会对应用程序内的任务执行任何监视,所以它不会尝试重新启动失败的任务。

在 ResourceManager接受一个新应用程序提交时,Scheduler制定的第一个决策是选择将用来运行ApplicationMaster的容器。在 ApplicationMaster启动后,它将负责此应用程序的整个生命周期。首先也是最重要的是,它将资源请求发送到 ResourceManager,请求运行应用程序的任务所需的容器。

资源请求是对一些容器的请求,用以满足一些资源需求,比如:

  • 一定量的资源,目前使用MB内存和CPU份额来表示
  • 一个首选的位置,由主机名、机架名称指定
  • 此应用程序中的一个优先级,而不是跨多个应用程序

如果可能的话,ResourceManager 会分配一个满足ApplicationMaster在资源请求中所请求的容器(表达为容器 ID和主机名)。该容器允许应用程序使用特定主机上给定的资源量。分配一个容器后,ApplicationMaster会要求NodeManager(管理分配容器的主机)使用这些资源来启动一个特定于应用程序的任务。此任务可以是在任何框架中编写的任何进程(比如一个 MapReduce 任务或一个Giraph任务)。

NodeManager 不会监视任务;它仅监视容器中的资源使用情况,例如,如果一个容器消耗的内存比最初分配的更多,它会结束该容器。

ApplicationMaster会竭尽全力协调容器,启动所有需要的任务来完成它的应用程序。它还监视应用程序及其任务的进度,在新请求的容器中重新启动失败的任务,以及向提交应用程序的客户端报告进度。

应用程序完成后,ApplicationMaster 会关闭自己并释放自己的容器。

尽管ResourceManager不会对应用程序内的任务执行任何监视,但它会检查 ApplicationMaster的健康状况。如果 ApplicationMaster失败,ResourceManager 可在一个新容器中重新启动它。我们可以认为ResourceManager负责管理ApplicationMaster,而 ApplicationMasters负责管理任务。

时间: 2024-10-10 15:28:29

分布式计算 MapReduce与yarn工作机制的相关文章

Yarn 工作机制

1.工作机制详述 (1)MR程序提交到客户端所在的节点. (2)YarnRunner向ResourceManager申请一个Application. (3)RM将该应用程序的资源路径返回给YarnRunner. (4)该程序将运行所需资源提交到HDFS上. (5)程序资源提交完毕后,申请运行mrAppMaster. (6)RM将用户的请求初始化成一个Task. (7)其中一个NodeManager领取到Task任务. (8)该NodeManager创建容器Container,并产生MRAppma

MapReduce与Yarn 的详细工作流程分析

MapReduce详细工作流程之Map阶段 如上图所示 首先有一个200M的待处理文件 切片:在客户端提交之前,根据参数配置,进行任务规划,将文件按128M每块进行切片 提交:提交可以提交到本地工作环境或者Yarn工作环境,本地只需要提交切片信息和xml配置文件,Yarn环境还需要提交jar包:本地环境一般只作为测试用 提交时会将每个任务封装为一个job交给Yarn来处理(详细见后边的Yarn工作流程介绍),计算出MapTask数量(等于切片数量),每个MapTask并行执行 MapTask中执

MapReduce On YARN

MapReduce计算框架 将计算过程分为两个阶段:Map和Reduce Map阶段并行处理输入数据: Reduce阶段对Map结果进行汇总 Shuffle连接Map和Reduce两个阶段 Map Task将数据写到本地磁盘: Reduce Task从每个Map Task上读取一份数据: 仅适合离线批处理 具有较好的容错性和扩展性: 适合批处理任务: 缺点: 启动Map/Reduce任务开销大.过多使用磁盘导致IO频繁等: MapReduce On YARN(MRv2) YARN负责资源管理和调

hadoop MapReduce Yarn运行机制

原 Hadoop MapReduce 框架的问题 原hadoop的MapReduce框架图 从上图中可以清楚的看出原 MapReduce 程序的流程及设计思路: 首先用户程序 (JobClient) 提交了一个 job,job 的信息会发送到 Job Tracker 中,Job Tracker 是 Map-reduce 框架的中心,他需要与集群中的机器定时通信 (heartbeat), 需要管理哪些程序应该跑在哪些机器上,需要管理所有 job 失败.重启等操作. TaskTracker 是 Ma

MapReduce 工作机制剖析

MapReduce工作机制剖析: 1.     在集群中的任意一个节点提交MapReduce程序: 2.     JobClient收到作业后,JobClient向JobTracker请求获取一个Job ID: 3.     将运行作业所需要的资源文件复制到HDFS上(包括MapReduce程序打包的JAR文件.配置文件和客户端计算所得的输入划分信息),这些文件都存放在JobTracker专门为该作业创建的文件夹中,文件夹名为该作业的Job ID: 4.     获得作业ID后,提交作业: 5.

大数据学习之八——MapReduce工作机制

1.MapReduce的特点 软件框架.并行处理.可靠且容错.大规模集群.海量数据集 2.mapper和reducer mapper负责"分":把复杂的任务分解为若干个"简单的任务"来处理.简单的任务包含三层含义: (1)数据或计算的规模相对原任务要大大缩小: (2)就近计算原则,任务会分配到存放着所需数据的节点上进行计算: (3)这些小任务可以并行计算,彼此间几乎没有依赖关系. reducer负责对map阶段的结果进行汇总. 3.MapReduce的工作机制 (1

MapReduce工作机制详解

1.MapTask工作机制整个Map阶段流程大体如上图所示.简单概述:input File通过split被逻辑切分为多个split文件,通过Record按行读取内容给map(用户自己实现的)进行处理,数据被map处理结束之后交给OutputCollector收集器,对其结果key进行分区(默认使用hash分区),然后写入buffer,每个map task都有一个内存缓冲区,存储着map的输出结果,当缓冲区快满的时候需要将缓冲区的数据以一个临时文件的方式存放到磁盘,当整个map task结束后再对

Hadoop Mapreduce 工作机制

一.Mapreduce 中的Combiner package com.gec.demo; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; public class WcCombiner extends Reducer<Text, IntWritable,

MapReduce程序的工作过程

还记得2.5年前就搭建好了Hadoop伪分布式集群,安装好Eclipse后运行成功了WordCount.java,然后学习Hadoop的步伐就变得很慢了,相信有很多小伙伴和我一样.自己对MR程序(特指Hadoop 1.x版本)的工作过程一直都不是很清楚,现在重点总结一下,为MR编程打好基础.由于MapReduce是基于HDFS的操作,因此要想深入理解MapReduce(解决的是分布式计算问题),首先得深入理解HDFS(解决的是分布式存储问题). 一. HDFS框架组成 HDFS采用master/