关于HFile的存储结构梳理以及快速定位rowkey

转自:http://blog.csdn.net/yangbutao/article/details/8394149

了解了布隆过滤器作用于HFile之上以及对HFile有了更深层次了解。

另有:http://my.oschina.net/zhengyang841117/blog/188723

一、HFile结构介绍

为了支持数据的随机查询,HFile结构分为六个部分:

1、数据块–保存表中的数据,每一个数据块由块头和一些keyValue(record)组成,key的值是严格按照顺序存储的。块大小默认为64K(由建表时创建cf时指定或者HColumnDescriptor.setBlockSize(size)),这一部分可以压缩存储。在查询数据时,是以数据块为单位从硬盘load到内存。查找数据时,是顺序的遍历该块中的keyValue对。

2、元数据块 (可选的)–保存用户自定义的kv对,可以被压缩。比如booleam filter就是存在元数据块中的,该块只保留value值,key值保存在元数据索引块中。每一个元数据块由块头和value值组成。可以快速判断key是都在这个HFile中。

3、File Info–Hfile的元信息,不被压缩,用户也可以在这一部分添加自己的元信息。

4、数据索引块 –Data Block的索引,每条索引的key是被索引的block的第一条记录的key(格式为:头信息,数据块offset数据块大小块第一个记录的key,........)。

这个参数控制hfile中索引块的大小,默认值是128K,也就是说当索引的信息超过128K后,就会新分配一个索引块。hbase对于hfile的访问都是通过索引块来实现的,通过索引来定位所要查的数据到底在哪个数据块里面。hfile中的索引块可以分成三中,根索引块,枝索引块,叶索引块。根索引块是一定会有的,但是如果hfile中的数据块比较少的话,枝索引块和叶索引块就可能不存在。当单个的索引块中没有办法存储全部的数据块的信息时,索引块就会分裂,会产生叶索引块和根索引块,根索引块是对叶索引块的索引,如果数据块继续增加就会产生枝索引块,整个索引结果的层次也会加深。

想象一下,如果整个hfile中只有根索引块,那么访问真正的数据的路径是,首先查根索引块定位数据块的位置,然后去查询数据块找到需要的数据。整个过程涉及到一次对索引块的扫描和一次对数据块的扫描。

如果hfile总块比较多,整个索引结构有2次的话,访问的路径是,首先访问根索引块定位叶索引块,访问叶索引块定位数据块,整个过程涉及到两次对索引块的扫描和一次对数据块的扫描。

整个索引树的深度越深,那么访问过程就越长,相应的扫描的时间也会越长。

那是不是把hfile.index.block.max.size设置得越大越好呢?也不是的,如果索引块太大了,对索引块本身的扫描时间就会显著的增加的。

根索引块一定是被缓存到内存中的,这个是在hfile打开的时候就缓存的.

想象一下,如果整个hfile中只有根索引块,那么访问真正的数据的路径是,首先查根索引块定位数据块的位置,然后去查询数

据块找到需要的数据。整个过程涉及到一次对索引块的扫描和一次对数据块的扫描。

HFile的数据块,元数据块通常采用压缩方式存储,压缩之后可以大大减少网络IO和磁盘IO,随之而来的开销当然是需要花费cpu进行压缩和解压缩

HFile Data Block Index索引层级的问题,

hfile.data.block.size(默认64K):同样的数据量,数据块越小,数据块越多,索引块相应的也就越多,索引层级就越深

hfile.index.block.max.size(默认128K):控制索引块的大小,索引块越小,需要的索引块越多,索引的层级越深

table key length:越大,索引层级越深

hfile中存储的数据量:越大,索引层级越深

5、元数据索引块 (可选的)–Meta Block的索引。

6、Trailer–这一段是定长的。保存了每一段(由一种类型的块组成)的偏移量,读取一个HFile时,会首先 读取Trailer,Trailer保存了每个段的起始位置(段的Magic Number用来做安全check),然后,数据索引会被读取到内存中,这样,当检索某个key时,不需要扫描整个HFile,而只需从内存中找到key所在的block,通过一次磁盘io将整个block读取到内存中,再找到需要的key。数据索引块采用LRU机制淘汰。

二、怎样从一系列的HFile中找到某个rowkey?

如果创建表时,指定了booleamFilter,那么就根据booleamFilter快速的判断该rowkey是否在这个HFile中。

如果没有定义booleamFilter,hbase在查找先会根据时间戳或者查询列的信息来进行过滤,过滤掉那些肯定不含有所需数据的storefile或者memstore,尽量把我们的查询目标范围缩小。

尽管缩小了,但仍可能会有多个文件需要扫描的。storefile的内部有序的,但是各个storefile之间并不是有序的。storefile的rowkey的范围很有可能有交叉。所以查询数据的过程也不可能是对storefile的顺序查找。
hbase会首先查看每个storefile的最小的rowkey,然后按照从小到大的顺序进行排序,结果放到一个队列中,排序的算法就是按照hbase的三维顺序,按照rowkey,column,ts进行排序,rowkey和column是升序,而ts是降序。
实际上并不是所有满足时间戳和列过滤的文件都会加到这个队列中,hbase会首先对各个storefile中的数据进行探测,只会扫描扫描那些存在比当前查询的rowkey大的记录的storefile。
    下面开始查询数据,整个过程用到了类似归并排序的算法,首先通过poll取出队列的头storefile,会从storefile读取一条记录返回;接下来呢,该storefile的下条记录并不一定是查询结果的下一条记录,因为队列的比较顺序是比较的每个storefile的第一条符合要求的rowkey。所以,hbase会继续从队列中剩下的storefile取第一条记录,把该记录与头storefile的第二条记录做比较,如果前者大,那么返回头storefile的第二条记录;如果后者大,则会把头storefile放回队列重新排序,在重新取队列的头storefile。然后重复上面的整个过程,直到找到key所在的HFile。范围缩小到该HFile后,就根据上面介绍的索引查找定位到块,快速的找到对应的记录。

时间: 2024-08-04 05:02:53

关于HFile的存储结构梳理以及快速定位rowkey的相关文章

InnoDB引擎的索引和存储结构

InnoDB引擎的索引和存储结构 在Oracle 和SQL Server等数据库中只有一种存储引擎,所有数据存储管理机制都是一样的.而MySql数据库提供了多种存储引擎.用户可以根据不同的需求为数据表选择不同的存储引擎,用户也可以根据自己的需要编写自己的存储引擎. 1.MySQL主要存储引擎的区别 MySQL默认的存储引擎是MyISAM,其他常用的就是InnoDB,另外还有MERGE.MEMORY(HEAP)等. (1)主要的几个存储引擎 MyISAM管理非事务表,提供高速存储和检索,以及全文搜

HBase 的存储结构

HBase 的存储结构 2016-10-17 杜亦舒 HBase 中的表常常是超级大表,这么大的表,在 HBase 中是如何存储的呢? HBase 会对表按行进行切分,划分为多个区域块儿,每个块儿名为 HRegion HBase 是集群结构,会把这些块儿分散存储到多个服务器中,每个服务器名为HRegionServer 服务器多了,就需要一个管理者 HMaster,负责 HRegion 的分配.HRegionServer 负载均衡的处理 等事务 当某个 HRegion 的大小达到阈值后,便会被分割

Atitit.数据索引 的种类以及原理实现机制 索引常用的存储结构

1. 索引的分类1 1.1. 按照存储结构划分btree,hash,bitmap,fulltext1 1.2. 索引的类型  按查找方式分,两种,分块索引 vs编号索引1 1.3. 顺序索引  vs 散列索引2 1.4. 按索引与数据的查找顺序可分为 正排与倒排索引2 1.5. 单列索引与多列索引 复合索引2 1.6. 分区索引和全局索引 2 1.7.  Trie树一般指字典树 又称单词查找树,Trie树2 1.8. 稠密索引 vs 稀疏索引3 1.9. 多级索引 vs 单击索引3 1.10.

Atitit.数据索引 的种类以及原理实现机制 索引常用的存储结构

Atitit.数据索引 的种类以及原理实现机制 索引常用的存储结构 1. 索引的分类1 1.1. 索引的类型  按查找方式分,两种,分块索引 vs编号索引1 1.2. 按索引与数据的查找顺序可分为 正排与倒排索引1 1.3. 单列索引与多列索引2 1.4. 分区索引和全局索引 2 2. 索引建立,更新的流程使用触发更新索引的事件2 3. 索引常用的存储结构 B树文件 叫做“索引顺序存取方法”(Indexed Sequential Access Method),缩写为ISAM.2 4.  Trie

10.树与树的存储结构

一.树 1.树的定义:树是n(n>=0)个结点的有限集,其中n=0时称为空树.在任意一颗非空树中:(1)有且仅有一个特定的称为根的结点;(2)当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1.T2.....Tm,其中每一个集合本身又是一棵树,并且称为根的子树(Subtree). 注意:当m>0时,子树的个数没有限制,但它们一定是互不相交的. 2.结点的度与树的度 树的结点包含一个数据元素及若干指向其子树的分支. (1)结点的度:结点拥有的子树称为结点的度(degree)

从NSM到Parquet:存储结构的衍化

为了优化MapReduce及MR之前的各种工具的性能,在Hadoop内建的数据存储格式外,又涌现了一批各种各样的存储方式.如优化Hive性能的RCFile,以及配合Impala实现出Google Dremel功能(类似甚至是功能的超集)的Parquet等.今天就来一起学习一下HDFS中数据存储的进化历程. 数据摆放结构 数据摆放结构(data placement structure),顾名思义,就是数据如何在HDFS中放置和存储的.这种摆放结构对于像Hive这种,HDFS之上的查询工具来说是非常

HIVE RCFile高效存储结构

本文介绍了Facebook公司数据分析系统中的RCFile存储结构,该结构集行存储和列存储的优点于一身,在 MapReduce环境下的大规模数据分析中扮演重要角色. Facebook曾在2010 ICDE(IEEE International Conference on Data Engineering)会议上介绍了数据仓库Hive.Hive存储海量数据在Hadoop系统中,提供了一套类数据库的数据存储和处理机制.它采用类 SQL语言对数据进行自动化管理和处理,经过语句解析和转换,最终生成基于H

以邻接表作为存储结构的图的深度优先遍历和广度优先遍历(c++版)

一.图的存储 用邻接表法存储图,存储结构分为两部分,一部分为存储图的所有顶点的数组,另一部分为挂载在数组的每个元素后面的用来表示顶点的邻接点的链表. 1.存储顶点的结构单元为: class vnode { public: string nodename; bool visted;//进行图的遍历时用于标记图是否被访问过 node *next; vnode() { visted = false; next = NULL; } }; 链表的结构单元为: class node { public: st

OCP第四章:存储结构+SGA

======================================================================================================================================= 存储结构--视频12 1.data file 2.control file 3.redo log file 4.parameter file 5.passowrd file 查询数据库名语句: show parameter db