norflash驱动编写笔记

【转自】http://blog.csdn.net/ziyiyunmen/article/details/9744901

一、Linux Flash驱动结构

1、Linux MTD系统层次

在Linux系统中,提供了MTD(内存技术设备)系统来建立Flash针对Linux的统一、抽象的接口。

在引入MTD后,Linux系统中Flash设备驱动及接口可分为4层,从上到下依次是:设备节点、MTD设备层、MTD原始设备层和硬件驱动层。如下所示:

1) 设备节点:通过mknod在/dev子目录下建立MTD字符设备节点(主设备号为90)和MTD块设备节点(主设备号为31),用户通过访问此设备节点即可访问MTD字符设备和块设备。

2) MTD设备层:分为MTD字符设备(mtdchar.c)和MTD块设备(mtdblock.c),建立在MTD原始设备层之上,为应用程序提供访问Flash的接口。

3) MTD原始设备层:MTD原始设备层由两部分组成,一部分是MTD原始设备的通用代码,另一部分是各个特定的Flash的数据,例如分区。

4) 硬件驱动层:Flash 硬件驱动层负责Flash硬件设备的读、写、擦除。

2、Linux MTD系统接口

在引入MTD后,底层Flash驱动直接与MTD原始设备层交互,利用其提供的接口注册设备和分区。

mtd_info是表示MTD原始设备的结构体,每个分区也被认为是一个mtd_info。例如:如果有两个MTD原始设备,而每个上有3个分区,在系统中就共有6个mtd_info结构体,这些mtd_info的指针被存放在名为mtd_table的数组里。

struct mtd_info {

u_char type;         /*内存技术的类型*/

u_int32_t flags;     /*标志位*/

u_int32_t size;      /*mtd设备的大小*/

u_int32_t erasesize; /*主要的擦除块大小*/

u_int32_t writesize; /*最小的可写单元的字节数*/

u_int32_t oobsize;   /*OOB字节数*/

u_int32_t oobavail;  /*可用的OOB字节数*/

char *name;          /*分区的名字*/

int index;           /*分区的索引号*/

struct nand_ecclayout *ecclayout;   /*ECC布局结构体指针*/

//不同的erasesize的区域

int numeraseregions; /*不同的erasesize的区域的数目*/

struct mtd_erase_region_info *eraseregions;

//擦除函数

int (*erase) (struct mtd_info *mtd, struct erase_info *instr);

//读写函数

int (*read) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);

int (*write) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf);

//oob读写函数

int (*read_oob) (struct mtd_info *mtd, loff_t from,

struct mtd_oob_ops *ops);

int (*write_oob) (struct mtd_info *mtd, loff_t to,

struct mtd_oob_ops *ops);

//设备锁

int (*lock) (struct mtd_info *mtd, loff_t ofs, size_t len);

int (*unlock) (struct mtd_info *mtd, loff_t ofs, size_t len);

//电源管理函数

int (*suspend) (struct mtd_info *mtd);

void (*resume) (struct mtd_info *mtd);

//坏块管理函数

int (*block_isbad) (struct mtd_info *mtd, loff_t ofs);

int (*block_markbad) (struct mtd_info *mtd, loff_t ofs);

void *priv;  /*私有数据*/

};

1) mtd_info的type字段给出底层物理设备的类型,包括MTD_RAM、MTD_ROM、MTD_NORFLASH、MTD_NANDFLASH等。

2) flags字段标志可以是MTD_WRITEABLE、MTD_BIT_WRITEABLE、MTD_NO_ERASE、MTD_POWERUP_LOCK等的组合。

3) mtd_info中的的read()、write()、read_oob()、write_oob()、erase()是MTD设备驱动要实现的主要函数。但是在NOR和NAND的驱动代码中几乎看不到mtd_info的成员函数,这是因为Linux在MTD的下层实现了针对NOR Flash和NAND Flash的通用的mtd_info成员函数。

Flash驱动中使用如下的两个函数注册和注销MTD设备:

int add_mtd_device(struct mtd_info *mtd);

int del_mtd_device (struct mtd_info *mtd);

mtd_part结构体用于表示分区(某一个分区),其mtd_info结构体成员用于描述该分区,它会被加入到mtd_table中。

struct mtd_part {

struct mtd_info mtd;     //分区的信息

struct mtd_info *master;  //该分区的主分区

u_int32_t offset;        //该分区的偏移地址

int index;              //分区号

struct list_head list;

int registered;

};

在MTD原始设备层中维护着一个mtd_part链表mtd_partitions(Flash的整个分区)。

struct mtd_partition {

char *name;           //标识字符串

u_int32_t size;       //分区大小

u_int32_t offset;     //主MTD空间内的偏移

u_int32_t mask_flags; //掩码标志

struct nand_ecclayout *ecclayout;  //OOB布局

struct mtd_info **mtdp;

};

Flash驱动中使用如下两个函数注册和注销分区:

int add_mtd_partitions(struct mtd_info *master,

const struct mtd_partition *parts,

int nbparts);

int del_mtd_partitions(struct mtd_info *master);

① add_mtd_partitions()会对每一个新建分区建立一个新的mtd_part结构体,将其加入mtd_partition中,并调用add_mtd_device()将此分区作为MTD设备加入mtd_table。

② del_mtd_partitions()的作用是对于mtd_partition上的每一个分区,如果它的主分区是master,则将它从mtd_partition和mtd_table中删除并释放掉,这个函数会调用del_mtd_device()。

二、NOR Flash驱动结构

在Linux系统中,实现了针对CFI(公共Flash接口)等接口的通用NOR驱动,这一层的驱动直接面向mtd_info的成员函数,这使得NOR的芯片级驱动变得非常的简单,只需要定义具体的内存映射情况结构体map_info并使用指定接口类型调用do_map_probe()。

NOR Flash驱动的核心是定义map_info结构体,它指定了NOR Flash的基址、位宽、大小等信息以及Flash的读写函数。

struct map_info {

char *name;           /*NOR FLASH的名字*/

unsigned long size;   /*NOR FLASH的大小*/

resource_size_t phys; /*NOR FLASH的起始物理地址*/

void __iomem *virt;   /*NOR FLASH的虚拟地址*/

void *cached;

int bankwidth;        /*NOR FLASH的总线宽度*/

//缓存的虚拟地址

void (*inval_cache)(struct map_info *, unsigned long, ssize_t);

void (*set_vpp)(struct map_info *, int);

};

NOR Flash驱动在Linux中实现非常简单,如下图所示:

① 定义map_info的实例,初始化其中的成员,根据目标板的情况为name、size、bankwidth和phys赋值。

② 如果Flash要分区,则定义mtd_partition数组,将实际电路板中Flash分区信息记录于其中。

③ 以map_info和探测的接口类型(如"cfi_probe"等)为参数调用do_map_probe(),探测Flash得到mtd_info。

三、NOR Flash驱动程序

时间: 2024-10-12 16:26:22

norflash驱动编写笔记的相关文章

I2C总线介绍及AT24C02驱动编写 笔记

中断处理程序 { 清除中断 硬件自动清除 软件清除 } CPU芯片手册相关章节 -------- I2C CPU外接设备的方式 1)GPIO简洁的方式(按键,LED) 通过设置GPIO管脚的状态来完成通信(控制) gpccon gpcpud gpcdat 2)类似于内存的接口 (DDRAM norflash nand dm9000) 从硬件上看CPU和芯片 数据线 地址先  BANK 3)协议类接口 uart I2C AT24C02    EEPROM 3,如何解决CPU和设备通信的问题 I2C

AM335x(TQ335x)学习笔记——触摸屏驱动编写

前面几篇文章已经通过配置DTS的方式完成了多个驱动的移植,接下来我们解决TQ335x的触摸驱动问题.由于种种原因,TQ335x的触摸屏驱动是以模块方式提供的,且Linux官方内核中也没有带该触摸屏的驱动源码,单纯的配置DTS是无法完成TQ335x的触摸驱动移植工作的,因此,本文参考内核中原有的pixcir_i2c_ts驱动编写TQ335x的触摸屏(TN92)驱动. 在之前移植TQ210时,我已经编写过TQ210的触摸屏驱动,我的TQ335x还是使用的TQ210的屏,因此,难度不是很大.这里需要说

20150312 NorFlash驱动

20150312 NorFlash驱动 2015-03-12 李海沿 以下知识点是根据韦老大的教程所做的笔记,板子是S3C2410. About NorFlash and NandFlash   NOR NAND 接口 RAM-like,引脚多 引脚少,复用 容量 小,1M,2M,32M 大,128M,256M,1G 读 简单 复杂 写 发出特定指令,复杂 复杂 价格 贵 便宜 质量 几乎没有坏块 可能有坏块,发生位反转 1.读数据 md.b 0 2.读ID NOR手册上 往地址555H写入AA

Tiny4412之串口(Uart)驱动编写

一:tiny4412串口驱动编写 1.串口通信简介 串口通信指串口按位(bit)发送和接收字节,串口通信的概念非常简单,串口按位(bit)发送和接收字节.尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线 接收数据.它很简单并且能够实现远距离通信.比如IEEE488定义并行通行状态时,规定设备线总长不得超过20米,并且任意两个设备间的长度不得超过2 米:而对于串口而言,长度可达1200米. 串口通信所采用的通信协议为RS-232,RS-232通信方式允许简单连

第十七篇:实例分析(3)--初探WDDM驱动学习笔记(十)

续: 还是记录一下, BltFuncs.cpp中的函数作用: CONVERT_32BPP_TO_16BPP 是将32bit的pixel转换成16bit的形式. 输入是DWORD 32位中, BYTE 0,1,2分别是RGB分量, 而BYTE3则是不用的 为了不减少color的范围, 所以,都是取RGB8,8,8的高RGB5, 6, 5位, 然后将这16位构成一个pixel. CONVERT_16BPP_TO_32BPP是将16bit的pixel转换成32bit的形式 输入是WORD 16BIT中

第十七篇:实例分析(4)--初探WDDM驱动学习笔记(十一)

感觉有必要把 KMDDOD_INITIALIZATION_DATA 中的这些函数指针的意思解释一下, 以便进一步的深入代码. DxgkDdiAddDevice 前面已经说过, 这个函数的主要内容是,将BASIC_DISPLAY_DRIVER实例指针存在context中, 以便后期使用, 支持多实例. DxgkDdiStartDevice 取得设备信息, 往注册表中加入内容, 从POST设备中获取FRAME BUFFER以及相关信息(DxgkCbAcquirePostDisplayOwnershi

第十七篇:博采众长--初探WDDM驱动学习笔记(七)

基于WDDM驱动的DirectX视频加速重定向框架设计与实现 现在的研究生的论文, 真正质量高的, 少之又少, 开题开得特别大, 动不动就要搞个大课题, 从绪论开始到真正自己所做的内容之间, 是东拼西凑地抄概念, 抄公式, 达到字数篇幅的要求, 而自己正真做了什么, 有哪些实际感受, 做出的内容, 相比前面的东拼西凑就几点内容, 之后就草草结束, 步入感谢的段落. 原因不光只有学生自己, 所谓的读研, 如果没有一个环境, 学生有再大的愿望, 再强的毅力, 到头来也只是空无奈. 有些导师要写书,

[arm驱动]input system 子系统的驱动编写

更多可参考 Linux输入子系统分析 input 子系统架构总结 1.定义一个static struct input_dev结构体 static struct input_dev *mybutton_dev; 2.初始化时分配input_dev结构体 mybutton_dev = input_allocate_device();//分配 input_dev /*能产生的事件类型 1. #define EV_SYN 0x00 /*表示设备支持所有的事件*/ 2. #define EV_KEY 0x

SPI驱动编写要点

题外话:面对成功和失败,一个人有没有“冠军之心”,直接影响他的表现. 几周前剖析了Linux SPI 驱动框架,算是明白个所以然,对于这么一个庞大的框架,并不是每一行代码都要自己去敲,因为前人已经把这个框架搭建好了,作为驱动开发者的我们只需要搞清楚哪一部分是需要自己修改或重新编写就OK了. 结合Linux内核面向对象的设计思想,SPI总的设计思路大概是这样的: 第①处:内核中抽象了SPI控制器,让spi_master成为他的象征,他的实例化对象就是与硬生生的SPI控制器对应的,在Linux内核中