支持向量机(SVM)(三)-- 最优间隔分类器(optimal margin classifier)

在之前为了寻找最有分类器,我们提出了例如以下优化问题:

在这里我们能够把约束条件改写成例如以下:

首先我们看以下的图示:

非常显然我们能够看出实线是最大间隔超平面,如果×号的是正例,圆圈的是负例。在虚线上的点和在实线上面的两个一共这三个点称作支持向量。如今我们结合KKT条件分析下这个图。

我们从式子和式子能够看出假设那么

这个也就说明时。w处于可行域的边界上,这时才是起作用的约束。

1、那我们如今能够构造拉格朗日函数例如以下:

注意到这里仅仅有没有是由于原问题中没有等式约束,仅仅有不等式约束。

2、接下来我们对w和b分别求偏导数。

并得到

3、将上式带回到拉格朗日函数中得到:

因为,因此简化为

4、如今我们得到了关于w和b的能够最小化的等式。我们在联合这个參数,当然他的条件还是>=0,如今我们能够得到例如以下的二元优化等式了:

5、如今你还必须知道我们之前解说的条件一是,二是KKT条件:

非常显然存在w使得对于全部的i,。因此,一定存在使得是原问题的解。是对偶问题的解。

假设求出了(也就是),依据

就可以求出w(也是,原问题的解)。然后

就可以求出b。即离超平面近期的正的函数间隔要等于离超平面近期的负的函数间隔。

6、如今我们在看另外一个问题:

因为

所以

这里我们将向量内积表示为

如今能够看出我要计算等式的话就仅仅须要计算向量的内积就好了。同一时候要是 在支持向量上面的话。那么,这样就更简单了,因此非常多的值都是0。

时间: 2024-10-26 16:55:55

支持向量机(SVM)(三)-- 最优间隔分类器(optimal margin classifier)的相关文章

机器学习-斯坦福:学习笔记7-最优间隔分类器问题

最优间隔分类器问题 本次课程大纲: 1. 最优间隔分类器 2. 原始优化问题&对偶优化问题(KKT条件) 3. SVM对偶问题 4. 核方法(下一讲) 复习: 支撑向量机中改动的符号: 输出y∈{-1,+1} h输出的假设值也改为{-1,+1} g(z) = { 1 , 如果z>=0;  -1, 如果z<0} hw.b(x)=g(wTx+b),这里的b相当于原来的θ0,w相当于原来θ除去θ0剩余部分,长度为n维.将截距b单提出来,方便引出支撑向量机. 函数间隔: 一个超平面(w,b)和

最优间隔分类器

最优间隔分类器 最优间隔分类器 对于一个给定的数据集,目前有一个很现实的需求就是要找到一个合适的决策边界,使得样本中的最小间隔(几何间隔)最大,而且这样的分类器能够使得分割的训练样本集之间的间隔(gap)最大.现在,我们假设训练集合线性可分,即可以找一条超平面把正样本和负样本分割开来.那么我们如何找到一个超平面来最大化几何间隔呢?我们得到了如下的优化问题: maxγ,w,b γ s.t. y(i)(wTx(i)+ b) ≥ γ, i = 1, . . . , m ||w|| = 1 也就是说,我

(笔记)斯坦福机器学习第七讲--最优间隔分类器

本讲内容 1.Optional margin classifier(最优间隔分类器) 2.primal/dual optimization(原始优化问题和对偶优化问题)KKT conditions(KKT条件) 3.SVM dual (SVM的对偶问题) 4.kernels (核方法) 1.最优间隔分类器 对于一个线性可分的训练集合,最优间隔分类器的任务是寻找到一个超平面(w,b), 使得该超平面到训练样本的几何间隔最大. 你可以任意地成比例地缩放w和b的值,这并不会改变几何间隔的大小. 例如,

斯坦福《机器学习》Lesson7感想———1、最优间隔分类器

从上一课可知,对于给定的线性可分的数据集,离分隔超平面最近的点是支持向量.而支持向量与分隔超平面间的距离越远,则说明最后算法的预测结果越可信.这课的核心就在于如何确定最佳的分隔超平面,即最优间隔分类器. 首先我们要介绍其中的数学推理,然后介绍最优间隔分类器. 1.凸优化问题 选取一个函数里的两个点,连接两个点成一条直线,两点间的函数点都在这条直线下即为凸函数,凸函数的例子有指数函数.当一个问题被转化为凸优化问题,说明这个问题可以很好被解决.对于凸优化问题来说,局部最优解就是全局最优解. 给定一个

机器学习(七、八):SVM(支持向量机)【最优间隔分类、顺序最小优化算法】

由于网上有讲得非常详细的博文,所以这一节就不自己写了,写也写不到别人那么好和透彻. jerrylead支持向量机系列: 支持向量机(一):http://www.cnblogs.com/jerrylead/archive/2011/03/13/1982639.html 支持向量机(二):http://www.cnblogs.com/jerrylead/archive/2011/03/13/1982684.html 支持向量机(三):http://www.cnblogs.com/jerrylead/

最优间隔分类器中为什么最大化1/||w||和最小化1/2*w^2等价

转自http://www.cnblogs.com/ldphoebe/p/5000769.html 函数间隔的取值并不影响最优化问题的解,因为成比例的改变w和b目标函数和约束条件都不受到影响,所以我们可以让函数间隔为1. 目标函数就变为1/||w||,由于让1/||w||最大化,等价于让分母||w||最小化,为今后求导方便,把1/||w||的最大化等价为的极小化.

简介支持向量机热门(认识SVM三位置)

支持向量机通俗导论(理解SVM的三层境地) 作者:July .致谢:pluskid.白石.JerryLead.出处:结构之法算法之道blog. 前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因非常简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者这个东西也不好讲清楚.尽管网上已经有朋友写得不错了(见文末參考链接),但在描写叙述数学公式的时候还是显得不够.得益于同学白石的数学证明,我还是想尝试写一下.希望本文在兼顾通

【转载】支持向量机SVM(二)

支持向量机SVM(二) [转载请注明出处]http://www.cnblogs.com/jerrylead 6 拉格朗日对偶(Lagrange duality) 先抛开上面的二次规划问题,先来看看存在等式约束的极值问题求法,比如下面的最优化问题: 目标函数是f(w),下面是等式约束.通常解法是引入拉格朗日算子,这里使用来表示算子,得到拉格朗日公式为 L是等式约束的个数. 然后分别对w和求偏导,使得偏导数等于0,然后解出w和.至于为什么引入拉格朗日算子可以求出极值,原因是f(w)的dw变化方向受其

【转载】支持向量机SVM(一)

支持向量机SVM(一) [转载请注明出处]http://www.cnblogs.com/jerrylead 1 简介 支持向量机基本上是最好的有监督学习算法了.最开始接触SVM是去年暑假的时候,老师要求交<统计学习理论>的报告,那时去网上下了一份入门教程,里面讲的很通俗,当时只是大致了解了一些相关概念.这次斯坦福提供的学习材料,让我重新学习了一些SVM知识.我看很多正统的讲法都是从VC 维理论和结构风险最小原理出发,然后引出SVM什么的,还有些资料上来就讲分类超平面什么的.这份材料从前几节讲的