大数据能做什么——无所不能的大数据

  大数据能够用来做什么?当前,大数据分析技术已经在很多领域实现了应用,赛事预测、流感预测、商业分析、用户行为分析……这些人们曾经无法实现的功能和应用,正在大数据的帮助下成为现实。下面,就来看看大数据带来的新奇应用吧!

恋爱预测

  大数据可以对人们的行为进行分析,从而得出一些结论。或许在你不愿意承认自己已经坠入爱河的时候,大数据就已经猜透了你的心思,知道你即将展开一段恋情。

  目前,已经有一些企业和技术人员开始利用大数据技术进行恋爱预测。据国外媒体报道,Facebook的数据科学家Carlos Diuk就曾经绘制了一张图表,这张图表展示了情侣从相恋到关系确定在Facebook上的发帖情况,根据这个模型,就可以推算两个人是否相恋。

  Carlos Diuk的研究发现,恋人在关系开始前的100天,发表状态的帖数持续增加,而在关系确定前的12天(平均值)达到了顶峰。而关系确立后,发帖数量便会下降,这应该理解成情侣已经开始在现实生活中增加交流。

  除了基于类似的模型,大数据还可以通过用户发帖中的关键词,比如“喜欢”、“愉悦”、“讨厌”、“受伤”等表达情绪的词汇的数量来分析用户的行为,综合这些分析结果,大数据可以轻松作出恋爱预测。

用数据卖房

  借助大数据卖房,在房市不够火热的今天,这已经成为一些房地产商拓宽销售渠道的有力手段。不久前,万科集团就宣布和链家地产进行合作,万科将增设链家地产目前20个旗舰店为客户终端服务平台,未来万科在京销售的所有项目都将与链家地产进行合作。通过成立线下签约中心、客户终端服务平台,链家地产将帮助万科收集、跟踪、分析购房者的消费行为数据,与购房者及时互动并了解购房者在购房过程中的决策变化,同时提供个性化建议。

  “今年我们各地公司都在探讨大数据。”万科集团高级副总裁毛大庆表示,“只不过大家是在找不同的数据源,用这个源头来找客户,另外用这个源头来黏住客户,我们只是走了不同的路而已。”

  显然,房地产公司正在瞄准大数据市场,希望借助数据的力量来卖房。在毛大庆看来,链家地产手中握有万科所不具备的数据资源。“二手房服务多是靠数据库来经营生意,这种视野和数据库是传统地产商所不具备的。”北京万科方面表示。

洞悉时尚潮流

  想知道明年的时尚潮流是什么,问问大数据。

  这并不是一句玩笑话,就在科技界拥抱大数据的同时,时尚界也开始尝试利用大数据。一家名为Editd的公司,建立了全球最大的服装数据库,其创始人原本是一名时装设计师,而成立Editd公司的初衷就是帮助全球服装零售商、品牌和供应商在正确的时间,以正确的价格交付正确的产品。

  据悉,Editd公司目前已经拥有了稳定的客户群,其中不仅有时尚品牌Gap,还有塔吉特百货(Target)等大公司。该公司不仅向客户提供各类服装数据,还提供实时分析与其他工具。

  值得一提的是,Editd公司的数据库包含了至少530亿个来自时尚行业的数据点,涵盖了全球1000多个零售商,同时拥有1500多万张高清图片。它的“社交监控”功能监控着全球80多万名有影响力的时尚潮人和专家的社交活动。而为了随时读取这些数据,Editd公司把大部分数据储存在内存而不是硬盘里。

  Editd的服务涵盖男装、女装、童装、配饰和美容等多个领域。由于输出端的信息是可以定制的,所以一家高端服装店负责牛仔服的业务员所看到的数据,与一家平价服装连锁店的女款针织衫采购员所看到的数据是截然不同的。

打造热播电影

  《纸牌屋》在全球的热播,证明了大数据在影视行业大有可为。相信很多人都已经听说,《纸牌屋》这部电视剧,从演员的选择、拍摄、后期制作乃至营销都借助了大数据手段,并最终取得了成功。

  2013年谷歌公布的电影票房预测模型,据称能提前一个月预测电影上映首周的票房收入,准确度高达94%。统计显示,电影相关的搜索量与票房收入之间存在很强关联性。大数据不仅可以预测电影票房,还能分析出观众的关联喜好,所以不排除大数据未来的发展趋势也将引导大众的电影投资行为。

  正是因为发现了大数据的魅力所在,目前很多电影公司都开始引入和使用大数据技术。可以说,当下的电影工业体系中,一部电影从研发、创作、生产到发行,几乎都能够看到大数据的身影。比如,在电影的策划阶段,就会提出数十种组合,请数据公司展开抽样调查,看看哪一种组合最受欢迎;又比如在演员的选择上,可以轻松通过大数据分析找到最适合此题材的演员。

  除了运用在电影的创作和制作环节,电影的宣传推广也离不开大数据。业界普遍认为,大数据将有助于电影公司更了解目标受众的基本属性,并展开精准化的营销,从而最终拉动票房收入。

时间: 2024-10-14 06:32:06

大数据能做什么——无所不能的大数据的相关文章

大数据能做什么,为什么学习大数据

Hadoop和大数据是这两年最火的词儿们之一,越来越多的公司对这个东西感兴趣,但是我接触到的大多数公司里的人,无论是技术人员还是老板.都不知道怎么能把这些东西用于改善自己公司的业务.在解答的过程中,提炼出几个要点,记录一下. 大数据和云是不是一回事? 这是最容易混淆的概念之一,我个人认为这是两回事,云服务,无论是云主机还是云存储还是云的其他应用,都是向用户提供一个接口,但这个接口的后端是虚拟机技术,或者分布式存储技术,或者其他分布式计算技术等等.简而言之,云的概念就是我向你提供服务,而你不需要关

阿里开发者们的第15个感悟:做一款优秀大数据引擎,要找准重点解决的业务场景

1月10日,做一款优秀大数据引擎,要找准重点解决的业务场景.这是我们送给开发者的第15个感悟. 沐远在社区分享了他的博文,<使用spark分析云HBase的数据><hive数据导入云hbase>,粉丝评论说请收下我的膝盖. 李伟(沐远)阿里云数据库技术专家专注大数据分布式计算数据库领域, 研发Spark及自主研发内存计算,目前为广大公有云用户提供专业的云HBase数据库及计算服务. 做一款优秀大数据引擎,要找准重点解决的业务场景,打磨一套易用的API,构架与上下游联动的生态. 推荐

做了五年大数据开发工程师总结的的大数据学习路线

先扯一下大数据的4V特征: 数据量大,TB->PB 数据类型繁多,结构化.非结构化文本.日志.视频.图片.地理位置等: 商业价值高,但是这种价值需要在海量数据之上,通过数据分析与机器学习更快速的挖掘出来: 处理时效性高,海量数据的处理需求不再局限在离线计算当中. 现如今,正式为了应对大数据的这几个特点,开源的大数据框架越来越多,越来越强,先列举一些常见的: 文件存储:Hadoop HDFS.Tachyon.KFS 离线计算:Hadoop MapReduce.Spark 流式.实时计算:Storm

打通感知与认知,明略数据还要做大数据知识工程

(上图为明略数据创始人吴明辉) 作为国内行业知识图谱领域的创新公司,明略数据在2018年4月进入了IDC的<中国知识图谱市场,2018>创新者研究报告,成为IDC评选出的5家中国知识图谱技术应用市场创新者.2017年8月,明略数据经过3年实践沉淀以及8年大数据技术积累,首次发布了基于知识图谱的行业人工智能大脑-明智系统1.0. 2018年9月7日,明略数据举办了2018年度产品发布会,即"行业AI大脑明智系统2.0",这是对1.0版本的产品技术体系全面升级.明智系统2.0在

【大数据干货】基于Hadoop的大数据平台实施——整体架构设计

大数据的热度在持续的升温,继云计算之后大数据成为又一大众所追捧的新星.我们暂不去讨论大数据到底是否适用于您的公司或组织,至少在互联网上已经被吹嘘成无所不能的超级战舰.大数据的热度在持续的升温,继云计算之后大数据成为又一大众所追捧的新星.我们暂不去讨论大数据到底是否适用于您的公司或组织,至少在互联网上已经被吹嘘成无所不能的超级战舰.好像一夜之间我们就从互联网时代跳跃进了大数据时代!关于到底什么是大数据,说真的,到目前为止就和云计算一样,让我总觉得像是在看电影<云图>--云里雾里的感觉.或许那些正

多线程十大经典案例之一 双线程读写队列数据

本文配套程序下载地址为:http://download.csdn.net/detail/morewindows/5136035 转载请标明出处,原文地址:http://blog.csdn.net/morewindows/article/details/8646902 欢迎关注微博:http://weibo.com/MoreWindows 在<秒杀多线程系列>的前十五篇中介绍多线程的相关概念,多线程同步互斥问题<秒杀多线程第四篇一个经典的多线程同步问题>及解决多线程同步互斥的常用方法

秒杀多线程第十六篇 多线程十大经典案例之一 双线程读写队列数据

版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[+] 本文配套程序下载地址为:http://download.csdn.net/detail/morewindows/5136035 转载请标明出处,原文地址:http://blog.csdn.net/morewindows/article/details/8646902 欢迎关注微博:http://weibo.com/MoreWindows 在<秒杀多线程系列>的前十五篇中介绍多线程的相关概念,多线程同步互斥问题<秒杀多

大数据学习总结(8)大数据场景

大数据场景一.各种标签查询 查询要素:人.事.物.单位 查询范围:A范围.B范围.... 查询结果:pic.name.data from 1.痛点:对所有文本皆有实时查询需求2.难点:传统SQL使用WHERE子句匹配LIKE关键词,在庞大的数据字段中搜索某些想要的字,需遍历所有数据页或者索引页,查询效率底,当出现千万级以上数据时,耗时较高,无法满足实时要求3.方案:使用全文检索方案,分布式架构,即使PB级量级也可做到毫秒级查询 大数据场景二.客户事件查询 查询条件:城市.区域.时间跨度(2017

多线程面试题系列(16):多线程十大经典案例之一 双线程读写队列数据

前十五篇中介绍多线程的相关概念,多线程同步互斥问题(第四篇)及解决多线程同步互斥的常用方法--关键段.事件.互斥量.信号量.读写锁.为了让大家更加熟练运用多线程,将会有十篇文章来讲解十个多线程使用案例,相信看完这十篇后会让你能更加游刃有余的使用多线程. 首先来看第一篇--第十六篇 多线程十大经典案例之一 双线程读写队列数据 <多线程十大经典案例之一双线程读写队列数据>案例描述: MFC对话框中一个按钮的响应函数实现两个功能:显示数据同时处理数据,因此开两个线程,一个线程显示数据(开了一个定时器