SQL Server 表和索引存储结构

在上一篇文章中,我们介绍了SQL Server数据文件的页面类型,系统通过96个字节的头部信息和系统表从逻辑层面上将表的存储结构管理起来,具体到表的存储结构上,SQL Server引入对象、分区、堆或B树、分配单元等概念。

下图显示了表的存储组织,每张表有一个对应的对象ID,并且包含一个或多个分区,每个分区会有一个堆或者多个B树,堆或者B树的结构是预留的。每个堆或者是B树都有三个分配单元用来存放数据,分别是数据、LOB、行溢出,使用最多的分配单元是数据。如果有LOB数据或者是长度超过8000字节的记录,则可能有另外的LOB分配单元和行溢出分配单元。

小总结: 一个表可以有多个分区,但是每个分区(堆/B树)最多有三个分配单元,每个分配单元可以有很多页,对于每个分配单元内的数据页,根据表是否有索引,以及索引是聚集还是非聚集,组织方式有以下三种:

1. 堆

所谓堆(heap),就是不含聚集索引的表。堆的 sys.partitions 中具有一行,对于堆使用的每个分区,都有index_id = 0。只有一个分区,在系统表里,对于这个分区下面的每个分配单元都有一个连接指向Index Allocation Map页(IAM),在IAM页里,描述了区的信息。

sys.system_internals_allocation_units 系统视图中的列 first_iam_page 指向管理特定分区中堆的分配空间的一系列 IAM 页的第一页。SQL Server  使用 IAM 页在堆中移动。堆内的数据页和行没有任何特定的顺序,也不链接在一起。数据页之间唯一的逻辑连接是记录在 IAM 页内的信息。

2. 具有非聚集索引的表

如果有一个表只有非聚集索引而没有聚集索引,对应的索引号是2--250。那么针对每个非聚集索引,都有一个对应的分区,在系统表进而,对于这个分区下面的每个分配单元,都有一个连接指向根页。数据页之间通过前后指针互相联系,是一个完整的树形结构。在树的底层,会有一个连接指向真正的数据,连接的形式是文件号+页号+行号,而真正的数据是以堆的形式存放的。如下图所示:

3. 具有聚集索引的表

表中的聚集索引,对应的索引号是1。它有一个对应的分区,该分区下的每个分配单元都有一个连接指向根页。对于聚集索引来说,叶子结点里存放的是真正的数据,而不是非聚集索引那样的连接。如下图所示:

非聚集索引与聚集索引具有相同的 B 树结构,它们之间的显著差别在于以下两点:

  • 基础表的数据行不按非聚集键的顺序排序和存储。
  • 非聚集索引的叶层是由索引页而不是由数据页组成

案例分析: 我们来查看一个表的存储结构,我们在此使用的表是一个生产表,共有1亿多条记录,查看表的object_ID,如下图所示:

此表,我已经做了分区,查看其分区信息,可以使用下图所示的命令:

从上图可以看到,此表共有16个分区,对应不同的索引,基本上每个分区都有1千多万条记录。从此图中还可以看到堆或者B树的ID跟分区ID是一样的,如果希望进一步查看某一个索引的具体信息,可以使用下面的命令,如查看72057594067419136的信息。

从这个图当中,我们可以看到这个分区只有一个分配单元,IN_ROW_DATA表明此分配单元只用来存放具体数据,共5353页,已使用5346页,数据占用5320页。

如果希望查看根页的位置,可以使用下面的命令:

但需要注意,这里显示的根页的位置是0xEC0100001100,由于存储的关系,用倒序的方式对它进行解析,也就是0x0011000001EC,最前面的两个字节表明是所在的文件组编号,后面的4个字节是页的编号,即(1,0x01CE) ,换成十进制(1,492),然后可以利用我们上一节所说的DBCC PAGE命令查看页的信息,如下图所示:

从中可以看到具体的数据,此界面的返回结果会因表上的聚集索引、非聚集索引而不同。如果查看一个表使用的总页数和区数,也可以使用命令:DBCC SHOWCONFIG,如下图所示:

在同样表结构的情况下,建立聚集索引不会增加表格的大小,但是建立非聚集索引反而会增加不少空间,在性能方面,SQL Server产品组做过测试,在select、update、delete操作下,聚集索引性能较高,在插入记录时,聚集索引和非聚集索引性能相同,没有出现聚集索引影响插入速度的现象,但在生产环境中,还是要谨慎行事。

时间: 2024-11-10 08:38:53

SQL Server 表和索引存储结构的相关文章

SQL SERVER全面优化-------索引有多重要?

想了好久索引的重要性应该怎么写?讲原理结构?我估计大部分人不愿意看,也不愿意花那么多时间仔细研究.光写应用?感觉不明白原理一样不会用.举例说明?情况太多也写不全....到底该怎么写呢? 随便写吧,想到哪写到哪!  前面很多篇不管CPU.内存.磁盘.语句等等等都提到了索引的重要,我想刚刚开始学数据库的在校学生都知道索引对语句性能的重要性.但他们可能不知道,对语句的重要性就是对系统的重要性! 抛出一个问题 :你相信一条语句就能让你的大系统挂掉么? 带着问题,首先还是贴出我的座驾 最近不太喜欢红色换了

SQL SERVER表不能修改表结构的处理方法

SQL SERVER表提示不能修改表结构,这究竟是什么原因呢?下面就为您介绍处理该问题的方法,如果您在SQL SERVER表修改方面遇到过问题,不妨一看. 新装的SQL SERVER 2008,打开原来SQL SERVER 2008中建立的表,现在想增加一些字段,在保存时提示错误,无法保存. 刚开始以为是SQL SERVER 2008与2005的不兼容,后来发现在SQL SERVER 2008中新建的SQL SERVER表也存在无法修改表结构,也就是无法修改字段名和增加字段名. 提示是:不允许保

sql server 表变量存储临时查询数据

对于使用sql server 编写存储过程或者类似的sql 查询的时候我们使用表变量进行临时数据的存储,可以方便我们进行下来的数据处理 表变量的使用类似如下: declare @userinfo table(id nvarchar(50),name nvarchar(50)); insert into @userinfo(id,name) select classid,classname from classfirstselect * from @userinfo 以上的操作就是进行查询clas

SQL Server :理解数据记录结构

在SQL Server :理解数据页结构我们提到每条记录都有7 bytes的系统行开销,那这个7 bytes行开销到底是一个什么样的结构,我们一起来看下. 数据记录存储我们具体的数据,换句话说,它存在堆表里,或者存在聚集索引的叶子节点.数据记录结构是为了让SQL Server更高效的管理数据.我们来看下数据记录结构示意图: 上图中蓝色部分是所有数据记录部分,绿色部分是表结构里取决于定长/变长列的数据记录部分. 行头系统数据: 用做状态位1的第1字节(8位)是用来定义记录的属性: 第0位:版本信息

Sql Server系列:索引基础

1. 索引概念 索引用于快速查找在某个列中某个特定值的行,不使用索引,数据库必须从第1条记录开始读完整个表,知道找出需要的行.表越大,查询数据所花费的时间越多.如果表中查询的列有索引,数据库能快速到达一个位置去查找数据,而不必遍历所有数据. 索引是一个单独的.存储在磁盘上的数据库结构,包含对数据表里所有记录的引用指针.使用索引用于快速找出一个或多个列中有特定值的行,对相关列使用索引是降低查询操作时间的最佳途径.索引包含由表或试图中的一列或多列生成的键. 索引的优点: ◊ 通过创建唯一索引,可以保

转载: SQL Server中的索引

http://www.blogjava.net/wangdetian168/archive/2011/03/07/347192.html 1 SQL Server中的索引 索引是与表或视图关联的磁盘上结构,可以加快从表或视图中检索行的速度.索引包含由表或视图中的一列或多列生成的键.这些键存储在一个结构(B 树)中,使 SQL Server 可以快速有效地查找与键值关联的行. 表或视图可以包含以下类型的索引: 聚集索引 聚集索引根据数据行的键值在表或视图中排序和存储这些数据行.索引定义中包含聚集索

SQL Server中的索引

1 SQL Server中的索引 索引是与表或视图关联的磁盘上结构,可以加快从表或视图中检索行的速度.索引包含由表或视图中的一列或多列生成的键.这些键存储在一个结构(B 树)中,使 SQL Server 可以快速有效地查找与键值关联的行. 表或视图可以包含以下类型的索引: 聚集索引 聚集索引根据数据行的键值在表或视图中排序和存储这些数据行.索引定义中包含聚集索引列.每个表只能有一个聚集索引,因为数据行本身只能按一个顺序排序. 只有当表包含聚集索引时,表中的数据行才按排序顺序存储.如果表具有聚集索

SQL Server 2014 聚集列存储

SQL Server 自2012以来引入了列存储的概念,至今2016对列存储的支持已经是非常友好了.由于我这边线上环境主要是2014,所以本文是以2014为基础的SQL Server 的列存储的介绍.下面我们主要看一下列存储的发展以及一些原理: 列存储的开发是想要处理超大量数据进行分析计算,于是在SQL Server 2012时,SQL Server 引入了列存储索引,用以显著提供高传统数据仓库类型语句的性能,并在SQL Server 2014中做了进一步加强.列存储会将一个列的数据单独存放在一

SQL Server表分区详解

原文:SQL Server表分区详解 什么是表分区 一般情况下,我们建立数据库表时,表数据都存放在一个文件里. 但是如果是分区表的话,表数据就会按照你指定的规则分放到不同的文件里,把一个大的数据文件拆分为多个小文件,还可以把这些小文件放在不同的磁盘下由多个cpu进行处理.这样文件的大小随着拆分而减小,还得到硬件系统的加强,自然对我们操作数据是大大有利的. 所以大数据量的数据表,对分区的需要还是必要的,因为它可以提高select效率,还可以对历史数据经行区分存档等.但是数据量少的数据就不要凑这个热