InnoDB存储引擎介绍-(2)redo和undo学习

01 – Undo Log
Undo Log 是为了实现事务的原子性,在MySQL数据库InnoDB存储引擎中,还用Undo Log来实现多版本并发控制(简称:MVCC)。

- 事务的原子性(Atomicity)
事务中的所有操作,要么全部完成,要么不做任何操作,不能只做部分操作。如果在执行的过程中发生了错误,要回滚(Rollback)到事务开始前的状态,就像这个事务从来没有执行过。

- 原理
Undo Log的原理很简单,为了满足事务的原子性,在操作任何数据之前,首先将数据备份到一个地方(这个存储数据备份的地方称为Undo Log)。然后进行数据的修改。如果出现了错误或者用户执行了ROLLBACK语句,系统可以利用Undo Log中的备份将数据恢复到事务开始之前的状态。
除了可以保证事务的原子性,Undo Log也可以用来辅助完成事务的持久化。

- 事务的持久性(Durability)
事务一旦完成,该事务对数据库所做的所有修改都会持久的保存到数据库中。为了保证持久性,数据库系统会将修改后的数据完全的记录到持久的存储上。

- 用Undo Log实现原子性和持久化的事务的简化过程
假设有A、B两个数据,值分别为1,2。
A.事务开始.
B.记录A=1到undo log.
C.修改A=3.
D.记录B=2到undo log.
E.修改B=4.
F.将undo log写到磁盘。
G.将数据写到磁盘。
H.事务提交
这里有一个隐含的前提条件:‘数据都是先读到内存中,然后修改内存中的数据,最后将数据写回磁盘’。

之所以能同时保证原子性和持久化,是因为以下特点:
A. 更新数据前记录Undo log。
B. 为了保证持久性,必须将数据在事务提交前写到磁盘。只要事务成功提交,数据必然已经持久化。
C. Undo log必须先于数据持久化到磁盘。如果在G,H之间系统崩溃,undo log是完整的,可以用来回滚事务。

D. 如果在A-F之间系统崩溃,因为数据没有持久化到磁盘。所以磁盘上的数据还是保持在事务开始前的状态。

缺陷:每个事务提交前将数据和Undo Log写入磁盘,这样会导致大量的磁盘IO,因此性能很低。
如果能够将数据缓存一段时间,就能减少IO提高性能。但是这样就会丧失事务的持久性。因此引入了另外一
种机制来实现持久化,即Redo Log.

02 – Redo Log
- 原理
和Undo Log相反,Redo Log记录的是新数据的备份。在事务提交前,只要将Redo Log持久化即可,
不需要将数据持久化。当系统崩溃时,虽然数据没有持久化,但是Redo Log已经持久化。系统可以根据Redo Log的内容,将所有数据恢复到最新的状态。

- Undo + Redo事务的简化过程
假设有A、B两个数据,值分别为1,2.
A.事务开始.
B.记录A=1到undo log.
C.修改A=3.
D.记录A=3到redo log.
E.记录B=2到undo log.
F.修改B=4.
G.记录B=4到redo log.
H.将redo log写入磁盘。
I.事务提交

- Undo + Redo事务的特点
A. 为了保证持久性,必须在事务提交前将Redo Log持久化。
B. 数据不需要在事务提交前写入磁盘,而是缓存在内存中。
C. Redo Log保证事务的持久性。
D. Undo Log保证事务的原子性。
E. 有一个隐含的特点,数据必须要晚于redo log写入持久存储。

- IO性能

Undo + Redo的设计主要考虑的是提升IO性能。虽说通过缓存数据,减少了写数据的IO. 但是却引入了新的IO,即写Redo Log的IO。如果Redo Log的IO性能不好,就不能起到提高性能的目的。

为了保证Redo Log能够有比较好的IO性能,InnoDB 的 Redo Log的设计有以下几个特点:

A. 尽量保持Redo Log存储在一段连续的空间上。因此在系统第一次启动时就会将日志文件的空间完全分配。以顺序追加的方式记录Redo Log,通过顺序IO来改善性能。
B. 批量写入日志。日志并不是直接写入文件,而是先写入redo log buffer.当需要将日志刷新到磁盘时 (如事务提交),将许多日志一起写入磁盘.
C. 并发的事务共享Redo Log的存储空间,它们的Redo Log按语句的执行顺序,依次交替的记录在一起,以减少日志占用的空间。例如,Redo Log中的记录内容可能是这样的:
记录1: <trx1, insert …>
记录2: <trx2, update …>
记录3: <trx1, delete …>
记录4: <trx3, update …>
记录5: <trx2, insert …>
D. 因为C的原因,当一个事务将Redo Log写入磁盘时,也会将其他未提交的事务的日志写入磁盘。
E. Redo Log上只进行顺序追加的操作,当一个事务需要回滚时,它的Redo Log记录也不会从Redo Log中删除掉。

03 – 恢复(Recovery)
- 恢复策略
前面说到未提交的事务和回滚了的事务也会记录Redo Log,因此在进行恢复时,这些事务要进行特殊的的处理.有2中不同的恢复策略:
A. 进行恢复时,只重做已经提交了的事务。
B. 进行恢复时,重做所有事务包括未提交的事务和回滚了的事务。然后通过Undo Log回滚那些未提交的事务。

- InnoDB存储引擎的恢复机制
MySQL数据库InnoDB存储引擎使用了B策略, InnoDB存储引擎中的恢复机制有几个特点:
A. 在重做Redo Log时,并不关心事务性。 恢复时,没有BEGIN,也没有COMMIT,ROLLBACK的行为。也不关心每个日志是哪个事务的。尽管事务ID等事务相关的内容会记入Redo Log,这些内容只是被当作要操作的数据的一部分。
B. 使用B策略就必须要将Undo Log持久化,而且必须要在写Redo Log之前将对应的Undo Log写入磁盘。
Undo和Redo Log的这种关联,使得持久化变得复杂起来。为了降低复杂度,InnoDB将Undo Log看作数据,因此记录Undo Log的操作也会记录到redo log中。这样undo log就可以象数据一样缓存起来, 而不用在redo log之前写入磁盘了。
包含Undo Log操作的Redo Log,看起来是这样的
记录1: <trx1, Undo log insert <undo_insert …>>
记录2: <trx1, insert …>
记录3: <trx2, Undo log insert <undo_update …>>
记录4: <trx2, update …>
记录5: <trx3, Undo log insert <undo_delete …>>
记录6: <trx3, delete …>
C. 到这里,还有一个问题没有弄清楚。既然Redo没有事务性,那岂不是会重新执行被回滚了的事务?
确实是这样。同时Innodb也会将事务回滚时的操作也记录到redo log中。回滚操作本质上也是对数据进行修改,因此回滚时对数据的操作也会记录到Redo Log中。
一个回滚了的事务的Redo Log,看起来是这样的:
记录1: <trx1, Undo log insert <undo_insert …>>
记录2: <trx1, insert A…>
记录3: <trx1, Undo log insert <undo_update …>>
记录4: <trx1, update B…>
记录5: <trx1, Undo log insert <undo_delete …>>
记录6: <trx1, delete C…>
记录7: <trx1, insert C>
记录8: <trx1, update B to old value>
记录9: <trx1, delete A>
一个被回滚了的事务在恢复时的操作就是先redo再undo,因此不会破坏数据的一致性.

时间: 2024-08-07 00:25:57

InnoDB存储引擎介绍-(2)redo和undo学习的相关文章

InnoDB存储引擎介绍-(1)InnoDB存储引擎结构

首先以一张图简单展示 InnoDB 的存储引擎的体系架构. 从图中可见, InnoDB 存储引擎有多个内存块,这些内存块组成了一个大的内存池,主要负责如下工作: 维护所有进程/线程需要访问的多个内部数据结构 缓存磁盘上的数据, 方便快速读取, 同时在对磁盘文件修改之前进行缓存 重做日志(redo log)缓冲 后台线程的主要作用是负责刷新内存池中的数据,保证缓冲池中的内存缓存的是最新数据;将已修改数据文件刷新到磁盘文件;保证数据库发生异常时 InnoDB 能恢复到正常运行 的状态 后台线程 In

InnoDB存储引擎介绍-(4)Checkpoint机制二

原文链接 http://www.cnblogs.com/chenpingzhao/p/5107480.html 一.简介 思考一下这个场景:如果重做日志可以无限地增大,同时缓冲池也足够大,那么是不需要将缓冲池中页的新版本刷新回磁盘.因为当发生宕机时,完全可以通过重做日志来恢复整个数据库系统中的数据到宕机发生的时刻. 但是这需要两个前提条件:1.缓冲池可以缓存数据库中所有的数据:2.重做日志可以无限增大 因此Checkpoint(检查点)技术就诞生了,目的是解决以下几个问题:1.缩短数据库的恢复时

mysql innodb存储引擎介绍

innodb存储引擎1.存储:数据目录.可以通过配置修改 存储文件:frm,ibd结尾的文件.frm存储表结构,ibd存储索引和数据 存储日志:ib_logfilen文件 2.innodb存储引擎开启或关闭: 关闭innodb_fast_shutdown= 0 完成所有的full purge和merge insert buffer操作(如:做InnoDB plugin升级时) 1 默认,不需要完成上述操作,但会刷新缓冲池中的脏页 2 不完成上述两个操作,而是将日志写入日志文件,下次启动时,会执行

InnoDB存储引擎介绍-(4)Checkpoint机制一

检查点的工作机制: innodb会自动维护一个检查点的机制,叫做 fuzzy checkpointing(当然sharp checkpoint也是检查点之一),fuzzy checkpointing就是将buffer pool当中的数据页信息小批量的刷新到磁盘.但是我们没有必要单批次批次的对buffer pool进行刷新,不然后影响其他正在执行的SQL进程. 在crash recovery期间,MySQL也会记录一次检查点信息到log  file当中去.它会记录数据库检查点发生之前的所有修改数据

InnoDB存储引擎介绍-(3)InnoDB缓冲池配置详解

原文链接  http://www.ywnds.com/?p=9886 一.InnoDB缓冲池 InnoDB维护一个称为缓冲池的内存存储区域 ,用于缓存内存中的数据和索引.了解InnoDB缓冲池的工作原理,并利用它来保存内存中经常访问的数据,这是MySQL调优的一个重要方面. 1.1 LRU(least recently used) InnoDB将buffer pool作为一个list管理,基于LRU算法.当有新的页要读入到buffer pool的时候,buffer pool就将最近最少使用的页从

InnoDB存储引擎介绍-(5) Innodb逻辑存储结构

如果创建表时没有显示的定义主键,mysql会按如下方式创建主键: 首先判断表中是否有非空的唯一索引,如果有,则该列为主键. 如果不符合上述条件,存储引擎会自动创建一个6字节大小的指针. 当表中有多个非空的唯一索引,会选择建表时第一个定义的非空唯一索引.注意根据的是定义索引的顺序,不是创建列的顺序. 表空间 tablespace(ibd文件) 段 segment(一个索引2个段) Extent(1MB) Page(16KB) Row Field 表空间

MySQL InnoDB存储引擎undo redo解析

本文是介绍MySQL数据库InnoDB存储引擎重做日志漫游 00 – Undo Log Undo Log 是为了实现事务的原子性,在MySQL数据库InnoDB存储引擎中.还用Undo Log来实现多版本号并发控制(简称:MVCC). - 事务的原子性(Atomicity) 事务中的所有操作,要么所有完毕,要么不做不论什么操作.不能仅仅做部分操作. 假设在运行的过程中发生 了错误,要回滚(Rollback)到事务開始前的状态,就像这个事务从来没有运行过. - 原理 Undo Log的原理非常ea

InnoDB存储引擎结构介绍

Ⅰ.InnoDB发展史 时间 事件 备注 1995 由Heikki Tuuri创建Innobase Oy公司,开发InnoDB存储引擎 Innobase开始做的是数据库,希望卖掉该公司 1996 MySQL 1.0 发布 2000 MySQL3.23版本发布 2001 InnoDB存储引擎集成到MySQL数据库 以插件方式集成 2006 Innobase被Oracle公司收购(InnoDB作为开源产品,性能和功能很强大) InnoDB在被收购后的,MySQL中的InnoDB版本没有改变 2010

[MySQL Reference Manual]14 InnoDB存储引擎

14 InnoDB存储引擎 14 InnoDB存储引擎... 1 14.1 InnoDB说明... 5 14.1.1 InnoDB作为默认存储引擎... 5 14.1.1.1 存储引擎的趋势... 5 14.1.1.2 InnoDB变成默认存储引擎之后... 5 14.1.1.3 InnoDB表好处... 6 14.1.1.4 InnoDB表最佳实践... 6 14.1.1.5 InnoDB表提升... 6 14.1.1.6 InnoDB作为默认存储引擎测试... 6 14.1.1.7 验证In