ng-route使用笔记

1.引入文件和依赖

2.定义路由表

引入ngRoute模块,引入的意义在于,需要它里面的$routeProvider服务

$routeProvider提供了定义路由表的服务,它有两个核心方法

when(path, route) 、otherwise(params)

when(path, route)方法接受两个参数

path是一个string类型,表示该条路由所匹配的路径,它将与地址栏的内容($location.path)值进行匹配;

route是一个object,用来指定path匹配后所需的一系列配置项,包括以下内容:

controller //function或string类型。在当前模板上执行的controller函数,生成新的scope
controllerAs //string类型,为controller指定别名
template //string或function类型,视图所用的模板,这部分内容将被ngView引用
templateUrl //string或function类型,当视图模板为单独的html文件或是使用了<script type="text/ng-template">定义模板时使用
resolve //指定当前controller所依赖的其他模块
redirectTo //重定向的地址

例如:

otherwise(params)

对应路径匹配不到时的情况,这时候我们可以配置一个redirectTo参数,让它重定向到404页面或者是首页。

3.在主视图模版中指定加载子视图的位置

我们的子视图将会在此处被引入进来。完成这三步后,你的程序的路由就配置好了。

(部分文字来源于网络)

时间: 2024-10-27 12:13:15

ng-route使用笔记的相关文章

Andrew Ng机器学习课程笔记(五)之应用机器学习的建议

Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录了Andrew Ng课程第五章应用机器学习的建议,主要介绍了在测试新数据出现较大误差该怎么处理,这期间讲到了数据集的分类,偏差,方差,学习曲线等概念,帮

Andrew Ng机器学习课程笔记(二)之逻辑回归

Andrew Ng机器学习课程笔记(二)之逻辑回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364598.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录了Andrew Ng课程第二章逻辑回归的笔记,主要介绍了梯度下降法,逻辑回归的损失函数,多类别分类等等 简要介绍:逻辑回归算法是分类算法,我们将它作为分类算法使用.

Andrew Ng机器学习课程笔记(四)之神经网络

Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录Andrew Ng课程第四章和第五章的神经网络,主要介绍前向传播算法,反向传播算法,神经网络的多类分类,梯度校验,参数随机初始化,参数的更新等等 1.神经网络概述

ng机器学习视频笔记(三) ——线性回归的多变量、特征缩放、标准方程法

ng机器学习视频笔记(三) --线性回归的多变量.特征缩放.标准方程法 (转载请附上本文链接--linhxx) 一.多变量 当有n个特征值,m个变量时,h(x)= θ0+θ1x1+θ2x2-+θnxn,其中可以认为x0=1.因此,h(x)= θTx,其中θ是一维向量,θ=[θ0, θ1-θn] T,x也是一维向量,x=[x0,x1..xn] T,其中x0=1. 二.特征缩放(Feature Scaling) 特征缩放的目的,是为了让每个特征值在数量上更加接近,使得每个特征值的变化的影响相对比较"

ng机器学习视频笔记(十二) ——PCA实现样本特征降维

ng机器学习视频笔记(十二) --PCA实现样本特征降维 (转载请附上本文链接--linhxx) 一.概述 所谓降维(dimensionality reduction),即降低样本的特征的数量,例如样本有10个特征值,要降维成5个特征值,即通过一些方法,把样本的10个特征值映射换算成5个特征值. 因此,降维是对输入的样本数据进行处理的,并没有对预测.分类的结果进行处理. 降维的最常用的方法叫做主成分分析(PCA,principal component analysis).最常用的业务场景是数据压

ng机器学习视频笔记(九) ——SVM理论基础

ng机器学习视频笔记(九) --SVM理论基础 (转载请附上本文链接--linhxx) 一.概述 支持向量机(support vector machine,SVM),是一种分类算法,也是属于监督学习的一种.其原理和logistics回归很像,也是通过拟合出一个边界函数,来区分各个分类的结果. 二.代价函数与假设函数 由于svm和logistic很相似,故与logistic进行比较.logistic的代价函数如下: 与logistic不同之处在于,SVM是用两个线段表示logistic中的h.在l

ng机器学习视频笔记(十一) ——K-均值算法理论

ng机器学习视频笔记(十一) --K-均值算法理论 (转载请附上本文链接--linhxx) 一.概述 K均值(K-Means)算法,是一种无监督学习(Unsupervised learning)算法,其核心是聚类(Clustering),即把一组输入,通过K均值算法进行分类,输出分类结果. 由于K均值算法是无监督学习算法,故这里输入的样本和之前不同了,输入的样本只有样本本身,没有对应的样本分类结果,即这里的输入的仅仅是{x(1),x(2),-x(m)},每个x没有对应的分类结果y(i),需要我们

ng机器学习视频笔记(四) ——logistic回归

ng机器学习视频笔记(四) --logistic回归 (转载请附上本文链接--linhxx) 一.概述 1.基本概念 logistic回归(logistic regression),是一个分类(classification)算法(注意不是回归算法,虽然有"回归"二字),用于处理分类问题,即结果是离散的.另外,由于有固定的结果,其是监督学习算法. 例如,预测天气.预测是否通过考试等,结果是离散的值,而预测房价这种就属于"回归"算法要解决的问题,而不是分类算法解决的问题

ng机器学习视频笔记(十四) ——推荐系统基础理论

ng机器学习视频笔记(十三) --推荐系统基础理论 (转载请附上本文链接--linhxx) 一.概述 推荐系统(recommender system),作为机器学习的应用之一,在各大app中都有应用.这里以用户评价电影.电影推荐为例,讲述推荐系统. 最简单的理解方式,即假设有两类电影,一类是爱情片,一类是动作片,爱情片3部,动作片2部,共有四个用户参与打分,分值在0~5分. 但是用户并没有对所有的电影打分,如下图所示,问号表示用户未打分的电影.另外,为了方便讲述,本文用nu代表用户数量,nm代表

ng机器学习视频笔记(十五) ——大数据机器学习(随机梯度下降与map reduce)

ng机器学习视频笔记(十五) --大数据机器学习(随机梯度下降与map reduce) (转载请附上本文链接--linhxx) 一.概述 1.存在问题 当样本集非常大的时候,例如m=1亿,此时如果使用原来的梯度下降算法(也成为批量梯度下降算法(batch gradient descent),下同),则速度会非常慢,因为其每次遍历整个数据集,才完成1次的梯度下降的优化.即计算机执行1亿次的计算,仅仅完成1次的优化,因此速度非常慢. 2.数据量考虑 在使用全量数据,而不是摘取一部分数据来做机器学习,