# _*_ coding: utf-8 _*_
"""类型和运算----类型和运算----类型和运算----类型和运算----类型和运算----类型和运算----类型和运算----类型和运算----类型和运算----类型和运算----类型和运算"""
#-- 寻求帮助:
dir (obj) # 简单的列出对象obj所包含的方法名称,返回一个字符串列表
help (obj.func) # 查询obj.func的具体介绍和用法
#-- 测试类型的三种方法,推荐第三种
if type (L) = = type ([]):
print ( "L is list" )
if type (L) = = list :
print ( "L is list" )
if isinstance (L, list ):
print ( "L is list" )
#-- Python数据类型:哈希类型、不可哈希类型
# 哈希类型,即在原地不能改变的变量类型,不可变类型。可利用hash函数查看其hash值,也可以作为字典的key
"数字类型:int, float, decimal.Decimal, fractions.Fraction, complex"
"字符串类型:str, bytes"
"元组:tuple"
"冻结集合:frozenset"
"布尔类型:True, False"
"None"
# 不可hash类型:原地可变类型:list、dict和set。它们不可以作为字典的key。
#-- 数字常量
1234 , - 1234 , 0 , 999999999 # 整数
1.23 , 1. , 3.14e - 10 , 4E210 , 4.0e + 210 # 浮点数
0o177 , 0x9ff , 0X9FF , 0b101010 # 八进制、十六进制、二进制数字
3 + 4j , 3.0 + 4.0j , 3J # 复数常量,也可以用complex(real, image)来创建
hex (I), oct (I), bin (I) # 将十进制数转化为十六进制、八进制、二进制表示的“字符串”
int (string, base) # 将字符串转化为整数,base为进制数
# 2.x中,有两种整数类型:一般整数(32位)和长整数(无穷精度)。可以用l或L结尾,迫使一般整数成为长整数
float ( ‘inf‘ ), float ( ‘-inf‘ ), float ( ‘nan‘ ) # 无穷大, 无穷小, 非数
#-- 数字的表达式操作符
yield x # 生成器函数发送协议
lambda args: expression # 生成匿名函数
x if y else z # 三元选择表达式
x and y, x or y, not x # 逻辑与、逻辑或、逻辑非
x in y, x not in y # 成员对象测试
x is y, x is not y # 对象实体测试
x<y, x< = y, x>y, x> = y, x = = y, x! = y # 大小比较,集合子集或超集值相等性操作符
1 < a < 3 # Python中允许连续比较
x|y, x&y, x^y # 位或、位与、位异或
x<<y, x>>y # 位操作:x左移、右移y位
+ , - , * , / , / / , % , * * # 真除法、floor除法:返回不大于真除法结果的整数值、取余、幂运算
- x, + x, ~x # 一元减法、识别、按位求补(取反)
x[i], x[i:j:k] # 索引、分片、调用
int ( 3.14 ), float ( 3 ) # 强制类型转换
#-- 整数可以利用bit_length函数测试所占的位数
a = 1 ; a.bit_length() # 1
a = 1024 ; a.bit_length() # 11
#-- repr和str显示格式的区别
"""
repr格式:默认的交互模式回显,产生的结果看起来它们就像是代码。
str格式:打印语句,转化成一种对用户更加友好的格式。
"""
#-- 数字相关的模块
# math模块
# Decimal模块:小数模块
import decimal
from decimal import Decimal
Decimal( "0.01" ) + Decimal( "0.02" ) # 返回Decimal("0.03")
decimal.getcontext().prec = 4 # 设置全局精度为4 即小数点后边4位
# Fraction模块:分数模块
from fractions import Fraction
x = Fraction( 4 , 6 ) # 分数类型 4/6
x = Fraction( "0.25" ) # 分数类型 1/4 接收字符串类型的参数
#-- 集合set
"""
set是一个无序不重复元素集, 基本功能包括关系测试和消除重复元素。
set支持union(联合), intersection(交), difference(差)和symmetric difference(对称差集)等数学运算。
set支持x in set, len(set), for x in set。
set不记录元素位置或者插入点, 因此不支持indexing, slicing, 或其它类序列的操作
"""
s = set ([ 3 , 5 , 9 , 10 ]) # 创建一个数值集合,返回{3, 5, 9, 10}
t = set ( "Hello" ) # 创建一个唯一字符的集合返回{}
a = t | s; t.union(s) # t 和 s的并集
b = t & s; t.intersection(s) # t 和 s的交集
c = t – s; t.difference(s) # 求差集(项在t中, 但不在s中)
d = t ^ s; t.symmetric_difference(s) # 对称差集(项在t或s中, 但不会同时出现在二者中)
t.add( ‘x‘ ); t.remove( ‘H‘ ) # 增加/删除一个item
s.update([ 10 , 37 , 42 ]) # 利用[......]更新s集合
x in s, x not in s # 集合中是否存在某个值
s.issubset(t); s < = t # 测试是否 s 中的每一个元素都在 t 中
s.issuperset(t); s > = t # 测试是否 t 中的每一个元素都在 s 中
s.copy(); #该功能与set(s)
s.discard(x); # 删除s中x
s.clear() # 清空s
{x * * 2 for x in [ 1 , 2 , 3 , 4 ]} # 集合解析,结果:{16, 1, 4, 9}
{x for x in ‘spam‘ } # 集合解析,结果:{‘a‘, ‘p‘, ‘s‘, ‘m‘}
S = frozenset ( range ( - 5 , 5 )) #一个冻结(不可变)的含有-5到4的个整型数的集合
#-- 集合frozenset,不可变对象
"""
set是可变对象,即不存在hash值,不能作为字典的键值。同样的还有list等(tuple是可以作为字典key的)
frozenset是不可变对象,即存在hash值,可作为字典的键值
frozenset对象没有add、remove等方法,但有union/intersection/difference等方法
"""
a = set ([ 1 , 2 , 3 ])
b = set ()
b.add(a) # error: set是不可哈希类型
b.add( frozenset (a)) # ok,将set变为frozenset,可哈希
#-- 布尔类型bool
type ( True ) # 返回<class ‘bool‘>
isinstance ( False , int ) # bool类型属于整型,所以返回True
True = = 1 ; True is 1 # 输出(True, False)
#-- 动态类型简介
"""
变量名通过引用,指向对象。
Python中的“类型”属于对象,而不是变量,每个对象都包含有头部信息,比如"类型标示符" "引用计数器"等
"""
#共享引用及在原处修改:对于可变对象,要注意尽量不要共享引用!
#共享引用和相等测试:
L = [ 1 ], M = [ 1 ], L is M # 返回False
L = M = [ 1 , 2 , 3 ], L is M # 返回True,共享引用
#增强赋值和共享引用:普通+号会生成新的对象,而增强赋值+=会在原处修改
L = M = [ 1 , 2 ]
L = L + [ 3 , 4 ] # L = [1, 2, 3, 4], M = [1, 2]
L + = [ 3 , 4 ] # L = [1, 2, 3, 4], M = [1, 2, 3, 4]
#-- 常见字符串常量和表达式
S = ‘‘ # 空字符串
S = "spam’s" # 双引号和单引号相同
S = "s\np\ta\x00m" # 转义字符
S = """spam""" # 三重引号字符串,一般用于函数说明
S = r ‘\temp‘ # Raw字符串,不会进行转义,抑制转义
S = b ‘Spam‘ # Python3中的字节字符串
S = u ‘spam‘ # Python2.6中的Unicode字符串
s1 + s2, s1 * 3 , s[i], s[i:j], len (s) # 字符串操作
‘a %s parrot‘ % ‘kind‘ # 字符串格式化表达式
‘a {1} {0} parrot‘ . format ( ‘kind‘ , ‘red‘ ) # 字符串格式化方法
for x in s: print (x) # 字符串迭代,成员关系
[x * 2 for x in s] # 字符串列表解析
‘,‘ .join([ ‘a‘ , ‘b‘ , ‘c‘ ]) # 字符串输出,结果:a,b,c
#-- 内置str处理函数:
str1 = "stringobject"
str1.upper(); str1.lower(); str1.swapcase(); str1.capitalize(); str1.title() # 全部大写,全部小写、大小写转换,首字母大写,每个单词的首字母都大写
str1.ljust(width) # 获取固定长度,左对齐,右边不够用空格补齐
str1.rjust(width) # 获取固定长度,右对齐,左边不够用空格补齐
str1.center(width) # 获取固定长度,中间对齐,两边不够用空格补齐
str1.zfill(width) # 获取固定长度,右对齐,左边不足用0补齐
str1.find( ‘t‘ ,start,end) # 查找字符串,可以指定起始及结束位置搜索
str1.rfind( ‘t‘ ) # 从右边开始查找字符串
str1.count( ‘t‘ ) # 查找字符串出现的次数
#上面所有方法都可用index代替,不同的是使用index查找不到会抛异常,而find返回-1
str1.replace( ‘old‘ , ‘new‘ ) # 替换函数,替换old为new,参数中可以指定maxReplaceTimes,即替换指定次数的old为new
str1.strip(); # 默认删除空白符
str1.strip( ‘d‘ ); # 删除str1字符串中开头、结尾处,位于 d 删除序列的字符
str1.lstrip();
str1.lstrip( ‘d‘ ); # 删除str1字符串中开头处,位于 d 删除序列的字符
str1.rstrip();
str1.rstrip( ‘d‘ ) # 删除str1字符串中结尾处,位于 d 删除序列的字符
str1.startswith( ‘start‘ ) # 是否以start开头
str1.endswith( ‘end‘ ) # 是否以end结尾
str1.isalnum(); str1.isalpha(); str1.isdigit(); str1.islower(); str1.isupper() # 判断字符串是否全为字符、数字、小写、大写
#-- 三重引号编写多行字符串块,并且在代码折行处嵌入换行字符\n
mantra = """hello world
hello python
hello my friend"""
# mantra为"""hello world \n hello python \n hello my friend"""
#-- 索引和分片:
S[ 0 ], S[ len (S)– 1 ], S[ - 1 ] # 索引
S[ 1 : 3 ], S[ 1 :], S[: - 1 ], S[ 1 : 10 : 2 ] # 分片,第三个参数指定步长,如`S[1:10:2]`是从1位到10位没隔2位获取一个字符。
#-- 字符串转换工具:
int ( ‘42‘ ), str ( 42 ) # 返回(42, ‘42‘)
float ( ‘4.13‘ ), str ( 4.13 ) # 返回(4.13, ‘4.13‘)
ord ( ‘s‘ ), chr ( 115 ) # 返回(115, ‘s‘)
int ( ‘1001‘ , 2 ) # 将字符串作为二进制数字,转化为数字,返回9
bin ( 13 ), oct ( 13 ), hex ( 13 ) # 将整数转化为二进制/八进制/十六进制字符串,返回(‘0b1101‘, ‘015‘, ‘0xd‘)
#-- 另类字符串连接
name = "wang" "hong" # 单行,name = "wanghong"
name = "wang" \
"hong" # 多行,name = "wanghong"
#-- Python中的字符串格式化实现1--字符串格式化表达式
"""
基于C语言的‘print‘模型,并且在大多数的现有的语言中使用。
通用结构:%[(name)][flag][width].[precision]typecode
name:在括号中引用期望字典的一项
flag:可以是- | + | 空格(正数前加空白,负数前加-)| 数字0(零填充)
width:整个最小域宽度(使用*从值中取)
precision]:给定包括在.后面的数字个数(即精度)(使用*从值中取)
typecode:
"""
"this is %d %s bird" % ( 1 , ‘dead‘ ) # 一般的格式化表达式
"%s---%s---%s" % ( 42 , 3.14 , [ 1 , 2 , 3 ]) # 字符串输出:‘42---3.14---[1, 2, 3]‘
"%d...%6d...%-6d...%06d" % ( 1234 , 1234 , 1234 , 1234 ) # 对齐方式及填充:"1234... 1234...1234 ...001234"
x = 1.23456789
"%e | %f | %g" % (x, x, x) # 对齐方式:"1.234568e+00 | 1.234568 | 1.23457"
"%6.2f*%-6.2f*%06.2f*%+6.2f" % (x, x, x, x) # 对齐方式:‘ 1.23*1.23 *001.23* +1.23‘
"%(name1)d---%(name2)s" % { "name1" : 23 , "name2" : "value2" } # 基于字典的格式化表达式
"%(name)s is %(age)d" % vars () # vars()函数调用返回一个字典,包含了所有本函数调用时存在的变量
#-- Python中的字符串格式化实现2--字符串格式化调用方法
# 普通调用
"{0}, {1} and {2}" . format ( ‘spam‘ , ‘ham‘ , ‘eggs‘ ) # 基于位置的调用
"{motto} and {pork}" . format (motto = ‘spam‘ , pork = ‘ham‘ ) # 基于Key的调用
"{motto} and {0}" . format ( ‘ham‘ , motto = ‘spam‘ ) # 混合调用
# 添加键 属性 偏移量 (import sys)
"my {1[spam]} runs {0.platform}" . format (sys, { ‘spam‘ : ‘laptop‘ }) # 基于位置的键和属性
"{config[spam]} {sys.platform}" . format (sys = sys, config = { ‘spam‘ : ‘laptop‘ }) # 基于Key的键和属性
"first = {0[0]}, second = {0[1]}" . format ([ ‘A‘ , ‘B‘ , ‘C‘ ]) # 基于位置的偏移量
# 具体格式化
"{0:e}, {1:.3e}, {2:g}" . format ( 3.14159 , 3.14159 , 3.14159 ) # 输出‘3.141590e+00, 3.142e+00, 3.14159‘
"{fieldname:format_spec}" . format (......)
# 说明:
"""
fieldname是指定参数的一个数字或关键字, 后边可跟可选的".name"或"[index]"成分引用
format_spec ::= [[fill]align][sign][#][0][width][][.precision][type]
fill, ::= <any character> #填充字符
align ::= "<" | ">" | "=" | "^" #对齐方式
sign ::= "+" | "-" | " " #符号说明
width ::= integer #字符串宽度
precision ::= integer #浮点数精度
type ::= "b" | "c" | "d" | "e" | "E" | "f" | "F" | "g" | "G" | "n" | "o" | "s" | "x" | "X" | "%"
"""
# 例子:
‘={0:10} = {1:10}‘ . format ( ‘spam‘ , 123.456 ) # 输出‘=spam = 123.456‘
‘={0:>10}=‘ . format ( ‘test‘ ) # 输出‘= test=‘
‘={0:<10}=‘ . format ( ‘test‘ ) # 输出‘=test =‘
‘={0:^10}=‘ . format ( ‘test‘ ) # 输出‘= test =‘
‘{0:X}, {1:o}, {2:b}‘ . format ( 255 , 255 , 255 ) # 输出‘FF, 377, 11111111‘
‘My name is {0:{1}}.‘ . format ( ‘Fred‘ , 8 ) # 输出‘My name is Fred .‘ 动态指定参数
#-- 常用列表常量和操作
L = [[ 1 , 2 ], ‘string‘ , {}] # 嵌套列表
L = list ( ‘spam‘ ) # 列表初始化
L = list ( range ( 0 , 4 )) # 列表初始化
list ( map ( ord , ‘spam‘ )) # 列表解析
len (L) # 求列表长度
L.count(value) # 求列表中某个值的个数
L.append(obj) # 向列表的尾部添加数据,比如append(2),添加元素2
L.insert(index, obj) # 向列表的指定index位置添加数据,index及其之后的数据后移
L.extend(interable) # 通过添加iterable中的元素来扩展列表,比如extend([2]),添加元素2,注意和append的区别
L.index(value, [start, [stop]]) # 返回列表中值value的第一个索引
L.pop([index]) # 删除并返回index处的元素,默认为删除并返回最后一个元素
L.remove(value) # 删除列表中的value值,只删除第一次出现的value的值
L.reverse() # 反转列表
L.sort( cmp = None , key = None , reverse = False ) # 排序列表
a = [ 1 , 2 , 3 ], b = a[ 10 :] # 注意,这里不会引发IndexError异常,只会返回一个空的列表[]
a = [], a + = [ 1 ] # 这里实在原有列表的基础上进行操作,即列表的id没有改变
a = [], a = a + [ 1 ] # 这里最后的a要构建一个新的列表,即a的id发生了变化
#-- 用切片来删除序列的某一段
a = [ 1 , 2 , 3 , 4 , 5 , 6 , 7 ]
a[ 1 : 4 ] = [] # a = [1, 5, 6, 7]
a = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 ]
del a[:: 2 ] # 去除偶数项(偶数索引的),a = [1, 3, 5, 7]
#-- 常用字典常量和操作
D = {}
D = { ‘spam‘ : 2 , ‘tol‘ :{ ‘ham‘ : 1 }} # 嵌套字典
D = dict .fromkeys([ ‘s‘ , ‘d‘ ], 8 ) # {‘s‘: 8, ‘d‘: 8}
D = dict (name = ‘tom‘ , age = 12 ) # {‘age‘: 12, ‘name‘: ‘tom‘}
D = dict ([( ‘name‘ , ‘tom‘ ), ( ‘age‘ , 12 )]) # {‘age‘: 12, ‘name‘: ‘tom‘}
D = dict ( zip ([ ‘name‘ , ‘age‘ ], [ ‘tom‘ , 12 ])) # {‘age‘: 12, ‘name‘: ‘tom‘}
D.keys(); D.values(); D.items() # 字典键、值以及键值对
D.get(key, default) # get函数
D.update(D_other) # 合并字典,如果存在相同的键值,D_other的数据会覆盖掉D的数据
D.pop(key, [D]) # 删除字典中键值为key的项,返回键值为key的值,如果不存在,返回默认值D,否则异常
D.popitem() # pop字典中随机的一项(一个键值对)
D.setdefault(k[, d]) # 设置D中某一项的默认值。如果k存在,则返回D[k],否则设置D[k]=d,同时返回D[k]。
del D # 删除字典
del D[ ‘key‘ ] # 删除字典的某一项
if key in D: if key not in D: # 测试字典键是否存在
# 字典注意事项:(1)对新索引赋值会添加一项(2)字典键不一定非得是字符串,也可以为任何的不可变对象
# 不可变对象:调用对象自身的任意方法,也不会改变该对象自身的内容,这些方法会创建新的对象并返回。
# 字符串、整数、tuple都是不可变对象,dict、set、list都是可变对象
D[( 1 , 2 , 3 )] = 2 # tuple作为字典的key
#-- 字典解析
D = {k: 8 for k in [ ‘s‘ , ‘d‘ ]} # {‘s‘: 8, ‘d‘: 8}
D = {k:v for (k, v) in zip ([ ‘name‘ , ‘age‘ ], [ ‘tom‘ , 12 ])} # {‘age‘: 12, ‘name‘: tom}
#-- 字典的特殊方法__missing__:当查找找不到key时,会执行该方法
class Dict ( dict ):
def __missing__( self , key):
self [key] = []
return self [key]
dct = Dict ()
dct[ "foo" ].append( 1 ) # 这有点类似于collections.defalutdict
dct[ "foo" ] # [1]
#-- 元组和列表的唯一区别在于元组是不可变对象,列表时可变对象
a = [ 1 , 2 , 3 ] # a[1] = 0, OK
a = ( 1 , 2 , 3 ) # a[1] = 0, Error
a = ([ 1 , 2 ]) # a[0][1] = 0, OK
a = [( 1 , 2 )] # a[0][1] = 0, Error
#-- 元组的特殊语法: 逗号和圆括号
D = ( 12 ) # 此时D为一个整数 即D = 12
D = ( 12 , ) # 此时D为一个元组 即D = (12, )
#-- 文件基本操作
output = open (r ‘C:\spam‘ , ‘w‘ ) # 打开输出文件,用于写
input = open ( ‘data‘ , ‘r‘ ) # 打开输入文件,用于读。打开的方式可以为‘w‘, ‘r‘, ‘a‘, ‘wb‘, ‘rb‘, ‘ab‘等
fp.read([size]) # size为读取的长度,以byte为单位
fp.readline([size]) # 读一行,如果定义了size,有可能返回的只是一行的一部分
fp.readlines([size]) # 把文件每一行作为一个list的一个成员,并返回这个list。其实它的内部是通过循环调用readline()来实现的。如果提供size参数,size是表示读取内容的总长。
fp.readable() # 是否可读
fp.write( str ) # 把str写到文件中,write()并不会在str后加上一个换行符
fp.writelines(seq) # 把seq的内容全部写到文件中(多行一次性写入)
fp.writeable() # 是否可写
fp.close() # 关闭文件。
fp.flush() # 把缓冲区的内容写入硬盘
fp.fileno() # 返回一个长整型的”文件标签“
fp.isatty() # 文件是否是一个终端设备文件(unix系统中的)
fp.tell() # 返回文件操作标记的当前位置,以文件的开头为原点
fp. next () # 返回下一行,并将文件操作标记位移到下一行。把一个file用于for … in file这样的语句时,就是调用next()函数来实现遍历的。
fp.seek(offset[,whence]) # 将文件打操作标记移到offset的位置。whence可以为0表示从头开始计算,1表示以当前位置为原点计算。2表示以文件末尾为原点进行计算。
fp.seekable() # 是否可以seek
fp.truncate([size]) # 把文件裁成规定的大小,默认的是裁到当前文件操作标记的位置。
for line in open ( ‘data‘ ):
print (line) # 使用for语句,比较适用于打开比较大的文件
open ( ‘f.txt‘ , encoding = ‘latin-1‘ ) # Python3.x Unicode文本文件
open ( ‘f.bin‘ , ‘rb‘ ) # Python3.x 二进制bytes文件
# 文件对象还有相应的属性:buffer closed encoding errors line_buffering name newlines等
#-- 其他
# Python中的真假值含义:1. 数字如果非零,则为真,0为假。 2. 其他对象如果非空,则为真
# 通常意义下的类型分类:1. 数字、序列、映射。 2. 可变类型和不可变类型
"""语法和语句----语法和语句----语法和语句----语法和语句----语法和语句----语法和语句----语法和语句----语法和语句----语法和语句----语法和语句----语法和语句"""
#-- 赋值语句的形式
spam = ‘spam‘ # 基本形式
spam, ham = ‘spam‘ , ‘ham‘ # 元组赋值形式
[spam, ham] = [ ‘s‘ , ‘h‘ ] # 列表赋值形式
a, b, c, d = ‘abcd‘ # 序列赋值形式
a, * b, c = ‘spam‘ # 序列解包形式(Python3.x中才有)
spam = ham = ‘no‘ # 多目标赋值运算,涉及到共享引用
spam + = 42 # 增强赋值,涉及到共享引用
#-- 序列赋值 序列解包
[a, b, c] = ( 1 , 2 , 3 ) # a = 1, b = 2, c = 3
a, b, c, d = "spam" # a = ‘s‘, b = ‘p‘, c = ‘a‘, d = ‘m‘
a, b, c = range ( 3 ) # a = 0, b = 1, c = 2
a, * b = [ 1 , 2 , 3 , 4 ] # a = 1, b = [2, 3, 4]
* a, b = [ 1 , 2 , 3 , 4 ] # a = [1, 2, 3], b = 4
a, * b, c = [ 1 , 2 , 3 , 4 ] # a = 1, b = [2, 3], c = 4
# 带有*时 会优先匹配*之外的变量 如
a, * b, c = [ 1 , 2 ] # a = 1, c = 2, b = []
#-- print函数原型
print (value, ..., sep = ‘ ‘ , end = ‘\n‘ , file = sys.stdout, flush = False )
# 流的重定向
print ( ‘hello world‘ ) # 等于sys.stdout.write(‘hello world‘)
temp = sys.stdout # 原有流的保存
sys.stdout = open ( ‘log.log‘ , ‘a‘ ) # 流的重定向
print ( ‘hello world‘ ) # 写入到文件log.log
sys.stdout.close()
sys.stdout = temp # 原有流的复原
#-- Python中and或or总是返回对象(左边的对象或右边的对象) 且具有短路求值的特性
1 or 2 or 3 # 返回 1
1 and 2 and 3 # 返回 3
#-- if/else三元表达符(if语句在行内)
A = 1 if X else 2
A = 1 if X else ( 2 if Y else 3 )
# 也可以使用and-or语句(一条语句实现多个if-else)
result = (a > 20 and "big than 20" or a > 10 and "big than 10" or a > 5 and "big than 5" )
#-- Python的while语句或者for语句可以带else语句 当然也可以带continue/break/pass语句
while a > 1 :
anything
else :
anything
# else语句会在循环结束后执行,除非在循环中执行了break,同样的还有for语句
for i in range ( 5 ):
anything
else :
anything
#-- for循环的元组赋值
for (a, b) in [( 1 , 2 ), ( 3 , 4 )]: # 最简单的赋值
for ((a, b), c) in [(( 1 , 2 ), 3 ), (( 4 , 5 ), 6 )]: # 自动解包赋值
for ((a, b), c) in [(( 1 , 2 ), 3 ), ( "XY" , 6 )]: # 自动解包 a = X, b = Y, c = 6
for (a, * b) in [( 1 , 2 , 3 ), ( 4 , 5 , 6 )]: # 自动解包赋值
#-- 列表解析语法
M = [[ 1 , 2 , 3 ], [ 4 , 5 , 6 ], [ 7 , 8 , 9 ]]
res = [ sum (row) for row in M] # G = [6, 15, 24] 一般的列表解析 生成一个列表
res = [c * 2 for c in ‘spam‘ ] # [‘ss‘, ‘pp‘, ‘aa‘, ‘mm‘]
res = [a * b for a in [ 1 , 2 ] for b in [ 4 , 5 ]] # 多解析过程 返回[4, 5, 8, 10]
res = [a for a in [ 1 , 2 , 3 ] if a < 2 ] # 带判断条件的解析过程
res = [a if a > 0 else 0 for a in [ - 1 , 0 , 1 ]] # 带判断条件的高级解析过程
# 两个列表同时解析:使用zip函数
for teama, teamb in zip ([ "Packers" , "49ers" ], [ "Ravens" , "Patriots" ]):
print (teama + " vs. " + teamb)
# 带索引的列表解析:使用enumerate函数
for index, team in enumerate ([ "Packers" , "49ers" , "Ravens" , "Patriots" ]):
print (index, team) # 输出0, Packers \n 1, 49ers \n ......
#-- 生成器表达式
G = ( sum (row) for row in M) # 使用小括号可以创建所需结果的生成器generator object
next (G), next (G), next (G) # 输出(6, 15, 24)
G = { sum (row) for row in M} # G = {6, 15, 24} 解析语法还可以生成集合和字典
G = {i: sum (M[i]) for i in range ( 3 )} # G = {0: 6, 1: 15, 2: 24}
#-- 文档字符串:出现在Module的开端以及其中函数或类的开端 使用三重引号字符串
"""
module document
"""
def func():
"""
function document
"""
print ()
class Employee:
"""
class document
"""
print ()
print (func.__doc__) # 输出函数文档字符串
print (Employee.__doc__) # 输出类的文档字符串
#-- 命名惯例:
"""
以单一下划线开头的变量名(_X)不会被from module import*等语句导入
前后有两个下划线的变量名(__X__)是系统定义的变量名,对解释器有特殊意义
以两个下划线开头但不以下划线结尾的变量名(__X)是类的本地(私有)变量
"""
#-- 列表解析 in成员关系测试 map sorted zip enumerate内置函数等都使用了迭代协议
‘first line‘ in open ( ‘test.txt‘ ) # in测试 返回True或False
list ( map ( str .upper, open ( ‘t‘ ))) # map内置函数
sorted ( iter ([ 2 , 5 , 8 , 3 , 1 ])) # sorted内置函数
list ( zip ([ 1 , 2 ], [ 3 , 4 ])) # zip内置函数 [(1, 3), (2, 4)]
#-- del语句: 手动删除某个变量
del X
#-- 获取列表的子表的方法:
x = [ 1 , 2 , 3 , 4 , 5 , 6 ]
x[: 3 ] # 前3个[1,2,3]
x[ 1 : 5 ] # 中间4个[2,3,4,5]
x[ - 3 :] # 最后3个[4,5,6]
x[:: 2 ] # 奇数项[1,3,5]
x[ 1 :: 2 ] # 偶数项[2,4,6]
#-- 手动迭代:iter和next
L = [ 1 , 2 ]
I = iter (L) # I为L的迭代器
I. next () # 返回1
I. next () # 返回2
I. next () # Error:StopIteration
#-- Python中的可迭代对象
"""
1.range迭代器
2.map、zip和filter迭代器
3.字典视图迭代器:D.keys()), D.items()等
4.文件类型
"""
"""函数语法规则----函数语法规则----函数语法规则----函数语法规则----函数语法规则----函数语法规则----函数语法规则----函数语法规则----函数语法规则----函数语法规则"""
#-- 函数相关的语句和表达式
myfunc( ‘spam‘ ) # 函数调用
def myfunc(): # 函数定义
return None # 函数返回值
global a # 全局变量
nonlocal x # 在函数或其他作用域中使用外层(非全局)变量
yield x # 生成器函数返回
lambda # 匿名函数
#-- Python函数变量名解析:LEGB原则,即:
"""
local(functin) --> encloseing function locals --> global(module) --> build-in(python)
说明:以下边的函数maker为例 则相对于action而言 X为Local N为Encloseing
"""
#-- 嵌套函数举例:工厂函数
def maker(N):
def action(X):
return X * * N
return action
f = maker( 2 ) # pass 2 to N
f( 3 ) # 9, pass 3 to X
#-- 嵌套函数举例:lambda实例
def maker(N):
action = ( lambda X: X * * N)
return action
f = maker( 2 ) # pass 2 to N
f( 3 ) # 9, pass 3 to X
#-- nonlocal和global语句的区别
# nonlocal应用于一个嵌套的函数的作用域中的一个名称 例如:
start = 100
def tester(start):
def nested(label):
nonlocal start # 指定start为tester函数内的local变量 而不是global变量start
print (label, start)
start + = 3
return nested
# global为全局的变量 即def之外的变量
def tester(start):
def nested(label):
global start # 指定start为global变量start
print (label, start)
start + = 3
return nested
#-- 函数参数,不可变参数通过“值”传递,可变参数通过“引用”传递
def f(a, b, c): print (a, b, c)
f( 1 , 2 , 3 ) # 参数位置匹配
f( 1 , c = 3 , b = 2 ) # 参数关键字匹配
def f(a, b = 1 , c = 2 ): print (a, b, c)
f( 1 ) # 默认参数匹配
f( 1 , 2 ) # 默认参数匹配
f(a = 1 , c = 3 ) # 关键字参数和默认参数的混合
# Keyword-Only参数:出现在*args之后 必须用关键字进行匹配
def keyOnly(a, * b, c): print (‘‘) # c就为keyword-only匹配 必须使用关键字c = value匹配
def keyOnly(a, * , b, c): ...... # b c为keyword-only匹配 必须使用关键字匹配
def keyOnly(a, * , b = 1 ): ...... # b有默认值 或者省略 或者使用关键字参数b = value
#-- 可变参数匹配: * 和 **
def f( * args): print (args) # 在元组中收集不匹配的位置参数
f( 1 , 2 , 3 ) # 输出(1, 2, 3)
def f( * * args): print (args) # 在字典中收集不匹配的关键字参数
f(a = 1 , b = 2 ) # 输出{‘a‘:1, ‘b‘:2}
def f(a, * b, * * c): print (a, b, c) # 两者混合使用
f( 1 , 2 , 3 , x = 4 , y = 5 ) # 输出1, (2, 3), {‘x‘:4, ‘y‘:5}
#-- 函数调用时的参数解包: * 和 ** 分别解包元组和字典
func( 1 , * ( 2 , 3 )) < = = > func( 1 , 2 , 3 )
func( 1 , * * { ‘c‘ : 3 , ‘b‘ : 2 }) < = = > func( 1 , b = 2 , c = 3 )
func( 1 , * ( 2 , 3 ), * * { ‘c‘ : 3 , ‘b‘ : 2 }) < = = > func( 1 , 2 , 3 , b = 2 , c = 3 )
#-- 函数属性:(自己定义的)函数可以添加属性
def func():.....
func.count = 1 # 自定义函数添加属性
print .count = 1 # Error 内置函数不可以添加属性
#-- 函数注解: 编写在def头部行 主要用于说明参数范围、参数类型、返回值类型等
def func(a: ‘spam‘ , b:( 1 , 10 ), c: float ) - > int :
print (a, b, c)
func.__annotations__ # {‘c‘:<class ‘float‘>, ‘b‘:(1, 10), ‘a‘:‘spam‘, ‘return‘:<class ‘int‘>}
# 编写注解的同时 还是可以使用函数默认值 并且注解的位置位于=号的前边
def func(a: ‘spam‘ = ‘a‘ , b:( 1 , 10 ) = 2 , c: float = 3 ) - > int :
print (a, b, c)
#-- 匿名函数:lambda
f = lambda x, y, z : x + y + z # 普通匿名函数,使用方法f(1, 2, 3)
f = lambda x = 1 , y = 1 : x + y # 带默认参数的lambda函数
def action(x): # 嵌套lambda函数
return ( lambda y : x + y)
f = lambda : a if xxx() else b # 无参数的lambda函数,使用方法f()
#-- lambda函数与map filter reduce函数的结合
list ( map (( lambda x: x + 1 ), [ 1 , 2 , 3 ])) # [2, 3, 4]
list ( filter (( lambda x: x > 0 ), range ( - 4 , 5 ))) # [1, 2, 3, 4]
functools. reduce (( lambda x, y: x + y), [ 1 , 2 , 3 ]) # 6
functools. reduce (( lambda x, y: x * y), [ 2 , 3 , 4 ]) # 24
#-- 生成器函数:yield VS return
def gensquare(N):
for i in range (N):
yield i * * 2 # 状态挂起 可以恢复到此时的状态
for i in gensquare( 5 ): # 使用方法
print (i, end = ‘ ‘ ) # [0, 1, 4, 9, 16]
x = gensquare( 2 ) # x是一个生成对象
next (x) # 等同于x.__next__() 返回0
next (x) # 等同于x.__next__() 返回1
next (x) # 等同于x.__next__() 抛出异常StopIteration
#-- 生成器表达式:小括号进行列表解析
G = (x * * 2 for x in range ( 3 )) # 使用小括号可以创建所需结果的生成器generator object
next (G), next (G), next (G) # 和上述中的生成器函数的返回值一致
#(1)生成器(生成器函数/生成器表达式)是单个迭代对象
G = (x * * 2 for x in range ( 4 ))
I1 = iter (G) # 这里实际上iter(G) = G
next (I1) # 输出0
next (G) # 输出1
next (I1) # 输出4
#(2)生成器不保留迭代后的结果
gen = (i for i in range ( 4 ))
2 in gen # 返回True
3 in gen # 返回True
1 in gen # 返回False,其实检测2的时候,1已经就不在生成器中了,即1已经被迭代过了,同理2、3也不在了
#-- 本地变量是静态检测的
X = 22 # 全局变量X的声明和定义
def test():
print (X) # 如果没有下一语句 则该句合法 打印全局变量X
X = 88 # 这一语句使得上一语句非法 因为它使得X变成了本地变量 上一句变成了打印一个未定义的本地变量(局部变量)
if False : # 即使这样的语句 也会把print语句视为非法语句 因为:
X = 88 # Python会无视if语句而仍然声明了局部变量X
def test(): # 改进
global X # 声明变量X为全局变量
print (X) # 打印全局变量X
X = 88 # 改变全局变量X
#-- 函数的默认值是在函数定义的时候实例化的 而不是在调用的时候 例子:
def foo(numbers = []): # 这里的[]是可变的
numbers.append( 9 )
print (numbers)
foo() # first time, like before, [9]
foo() # second time, not like before, [9, 9]
foo() # third time, not like before too, [9, 9, 9]
# 改进:
def foo(numbers = None ):
if numbers is None : numbers = []
numbers.append( 9 )
print (numbers)
# 另外一个例子 参数的默认值为不可变的:
def foo(count = 0 ): # 这里的0是数字, 是不可变的
count + = 1
print (count)
foo() # 输出1
foo() # 还是输出1
foo( 3 ) # 输出4
foo() # 还是输出1
"""函数例子----函数例子----函数例子----函数例子----函数例子----函数例子----函数例子----函数例子----函数例子----函数例子----函数例子----函数例子----函数例子"""
"""数学运算类"""
abs (x) # 求绝对值,参数可以是整型,也可以是复数,若参数是复数,则返回复数的模
complex ([real[, imag]]) # 创建一个复数
divmod (a, b) # 分别取商和余数,注意:整型、浮点型都可以
float ([x]) # 将一个字符串或数转换为浮点数。如果无参数将返回0.0
int ([x[, base]]) # 将一个字符串或浮点数转换为int类型,base表示进制
long ([x[, base]]) # 将一个字符串或浮点数转换为long类型
pow (x, y) # 返回x的y次幂
range ([start], stop[, step]) # 产生一个序列,默认从0开始
round (x[, n]) # 四舍五入
sum (iterable[, start]) # 对集合求和
oct (x) # 将一个数字转化为8进制字符串
hex (x) # 将一个数字转换为16进制字符串
chr (i) # 返回给定int类型对应的ASCII字符
unichr (i) # 返回给定int类型的unicode
ord (c) # 返回ASCII字符对应的整数
bin (x) # 将整数x转换为二进制字符串
bool ([x]) # 将x转换为Boolean类型
"""集合类操作"""
basestring () # str和unicode的超类,不能直接调用,可以用作isinstance判断
format (value [, format_spec]) # 格式化输出字符串,格式化的参数顺序从0开始,如“I am {0},I like {1}”
enumerate (sequence[, start = 0 ]) # 返回一个可枚举的对象,注意它有第二个参数
iter (obj[, sentinel]) # 生成一个对象的迭代器,第二个参数表示分隔符
max (iterable[, args...][key]) # 返回集合中的最大值
min (iterable[, args...][key]) # 返回集合中的最小值
dict ([arg]) # 创建数据字典
list ([iterable]) # 将一个集合类转换为另外一个集合类
set () # set对象实例化
frozenset ([iterable]) # 产生一个不可变的set
tuple ([iterable]) # 生成一个tuple类型
str ([ object ]) # 转换为string类型
sorted (iterable[, cmp [, key[, reverse]]]) # 集合排序
L = [( ‘b‘ , 2 ),( ‘a‘ , 1 ),( ‘c‘ , 3 ),( ‘d‘ , 4 )]
sorted (L, key = lambda x: x[ 1 ]), reverse = True ) # 使用Key参数和reverse参数
sorted (L, key = lambda x: (x[ 0 ], x[ 1 ])) # 使用key参数进行多条件排序,即如果x[0]相同,则比较x[1]
"""逻辑判断"""
all (iterable) # 集合中的元素都为真的时候为真,特别的,若为空串返回为True
any (iterable) # 集合中的元素有一个为真的时候为真,特别的,若为空串返回为False
cmp (x, y) # 如果x < y ,返回负数;x == y, 返回0;x > y,返回正数
"""IO操作"""
file (filename [, mode [, bufsize]]) # file类型的构造函数。
input ([prompt]) # 获取用户输入,推荐使用raw_input,因为该函数将不会捕获用户的错误输入
raw_input ([prompt]) # 设置输入,输入都是作为字符串处理
open (name[, mode[, buffering]]) # 打开文件,与file有什么不同?推荐使用open
"""其他"""
callable ( object ) # 检查对象object是否可调用
classmethod (func) # 用来说明这个func是个类方法
staticmethod (func) # 用来说明这个func为静态方法
dir ([ object ]) # 不带参数时,返回当前范围内的变量、方法和定义的类型列表;带参数时,返回参数的属性、方法列表。
help (obj) # 返回obj的帮助信息
eval (expression) # 计算表达式expression的值,并返回
exec ( str ) # 将str作为Python语句执行
execfile (filename) # 用法类似exec(),不同的是execfile的参数filename为文件名,而exec的参数为字符串。
filter (function, iterable) # 构造一个序列,等价于[item for item in iterable if function(item)],function返回值为True或False的函数
list ( filter ( bool , range ( - 3 , 4 ))) # 返回[-3, -2, -1, 1, 2, 3], 没有0
hasattr ( object , name) # 判断对象object是否包含名为name的特性
getattr ( object , name [, defalut]) # 获取一个类的属性
setattr ( object , name, value) # 设置属性值
delattr ( object , name) # 删除object对象名为name的属性
globals () # 返回一个描述当前全局符号表的字典
hash ( object ) # 如果对象object为哈希表类型,返回对象object的哈希值
id ( object ) # 返回对象的唯一标识,一串数字
isinstance ( object , classinfo) # 判断object是否是class的实例
isinstance ( 1 , int ) # 判断是不是int类型
isinstance ( 1 , ( int , float )) # isinstance的第二个参数接受一个元组类型
issubclass ( class , classinfo) # 判断class是否为classinfo的子类
locals () # 返回当前的变量列表
map (function, iterable, ...) # 遍历每个元素,执行function操作
list ( map ( abs , range ( - 3 , 4 ))) # 返回[3, 2, 1, 0, 1, 2, 3]
next (iterator[, default]) # 类似于iterator.next()
property ([fget[, fset[, fdel[, doc]]]]) # 属性访问的包装类,设置后可以通过c.x=value等来访问setter和getter
reduce (function, iterable[, initializer]) # 合并操作,从第一个开始是前两个参数,然后是前两个的结果与第三个合并进行处理,以此类推
def add(x,y): return x + y
reduce (add, range ( 1 , 11 )) # 返回55 (注:1+2+3+4+5+6+7+8+9+10 = 55)
reduce (add, range ( 1 , 11 ), 20 ) # 返回75
reload (module) # 重新加载模块
repr ( object ) # 将一个对象变幻为可打印的格式
slice (start, stop[, step]) # 产生分片对象
type ( object ) # 返回该object的类型
vars ([ object ]) # 返回对象的变量名、变量值得字典
a = Class(); # Class为一个空类
a.name = ‘qi‘ , a.age = 9
vars (a) # {‘name‘:‘qi‘, ‘age‘:9}
zip ([iterable, ...]) # 返回对应数组
list ( zip ([ 1 , 2 , 3 ], [ 4 , 5 , 6 ])) # [(1, 4), (2, 5), (3, 6)]
a = [ 1 , 2 , 3 ], b = [ "a" , "b" , "c" ]
z = zip (a, b) # 压缩:[(1, "a"), (2, "b"), (3, "c")]
zip ( * z) # 解压缩:[(1, 2, 3), ("a", "b", "c")]
unicode (string, encoding, errors) # 将字符串string转化为unicode形式,string为encoded string。
"""模块Moudle----模块Moudle----模块Moudle----模块Moudle----模块Moudle----模块Moudle----模块Moudle----模块Moudle----模块Moudle----模块Moudle----模块Moudle"""
#-- Python模块搜索路径:
"""
(1)程序的主目录 (2)PYTHONPATH目录 (3)标准链接库目录 (4)任何.pth文件的内容
"""
#-- 查看全部的模块搜索路径
import sys
sys.path
sys.argv # 获得脚本的参数
sys.builtin_module_names # 查找内建模块
sys.platform # 返回当前平台 出现如: "win32" "linux" "darwin"等
sys.modules # 查找已导入的模块
sys.modules.keys()
sys.stdout # stdout 和 stderr 都是类文件对象,但是它们都是只写的。它们都没有 read 方法,只有 write 方法
sys.stdout.write( "hello" )
sys.stderr
sys.stdin
#-- 模块的使用代码
import module1, module2 # 导入module1 使用module1.printer()
from module1 import printer # 导入module1中的printer变量 使用printer()
from module1 import * # 导入module1中的全部变量 使用不必添加module1前缀
#-- 重载模块reload: 这是一个内置函数 而不是一条语句
from imp import reload
reload (module)
#-- 模块的包导入:使用点号(.)而不是路径(dir1\dir2)进行导入
import dir1.dir2.mod # d导入包(目录)dir1中的包dir2中的mod模块 此时dir1必须在Python可搜索路径中
from dir1.dir2.mod import * # from语法的包导入
#-- __init__.py包文件:每个导入的包中都应该包含这么一个文件
"""
该文件可以为空
首次进行包导入时 该文件会自动执行
高级功能:在该文件中使用__all__列表来定义包(目录)以from*的形式导入时 需要导入什么
"""
#-- 包相对导入:使用点号(.) 只能使用from语句
from . import spam # 导入当前目录下的spam模块(错误: 当前目录下的模块, 直接导入即可)
from .spam import name # 导入当前目录下的spam模块的name属性(错误: 当前目录下的模块, 直接导入即可,不用加.)
from .. import spam # 导入当前目录的父目录下的spam模块
#-- 包相对导入与普通导入的区别
from string import * # 这里导入的string模块为sys.path路径上的 而不是本目录下的string模块(如果存在也不是)
from .string import * # 这里导入的string模块为本目录下的(不存在则导入失败) 而不是sys.path路径上的
#-- 模块数据隐藏:最小化from*的破坏
_X # 变量名前加下划线可以防止from*导入时该变量名被复制出去
__all__ = [ ‘x‘ , ‘x1‘ , ‘x2‘ ] # 使用__all__列表指定from*时复制出去的变量名(变量名在列表中为字符串形式)
#-- 可以使用__name__进行模块的单元测试:当模块为顶层执行文件时值为‘__main__‘ 当模块被导入时为模块名
if __name__ = = ‘__main__‘ :
doSomething
# 模块属性中还有其他属性,例如:
__doc__ # 模块的说明文档
__file__ # 模块文件的文件名,包括全路径
__name__ # 主文件或者被导入文件
__package__ # 模块所在的包
#-- import语句from语句的as扩展
import modulename as name
from modulename import attrname as name
#-- 得到模块属性的几种方法 假设为了得到name属性的值
M.name
M.__dict__[ ‘name‘ ]
sys.modules[ ‘M‘ ].name
getattr (M, ‘name‘ )
"""类与面向对象----类与面向对象----类与面向对象----类与面向对象----类与面向对象----类与面向对象----类与面向对象----类与面向对象----类与面向对象----类与面向对象"""
#-- 最普通的类
class C1(C2, C3):
spam = 42 # 数据属性
def __init__( self , name): # 函数属性:构造函数
self .name = name
def __del__( self ): # 函数属性:析构函数
print ( "goodbey " , self .name)
I1 = C1( ‘bob‘ )
#-- Python的类没有基于参数的函数重载
class FirstClass:
def test( self , string):
print (string)
def test( self ): # 此时类中只有一个test函数 即后者test(self) 它覆盖掉前者带参数的test函数
print ( "hello world" )
#-- 子类扩展超类: 尽量调用超类的方法
class Manager(Person):
def giveRaise( self , percent, bonus = . 10 ):
self .pay = int ( self .pay * ( 1 + percent + bonus)) # 不好的方式 复制粘贴超类代码
Person.giveRaise( self , percent + bonus) # 好的方式 尽量调用超类方法
#-- 类内省工具
bob = Person( ‘bob‘ )
bob.__class__ # <class ‘Person‘>
bob.__class__.__name__ # ‘Person‘
bob.__dict__ # {‘pay‘:0, ‘name‘:‘bob‘, ‘job‘:‘Manager‘}
#-- 返回1中 数据属性spam是属于类 而不是对象
I1 = C1( ‘bob‘ ); I2 = C2( ‘tom‘ ) # 此时I1和I2的spam都为42 但是都是返回的C1的spam属性
C1.spam = 24 # 此时I1和I2的spam都为24
I1.spam = 3 # 此时I1新增自有属性spam 值为2 I2和C1的spam还都为24
#-- 类方法调用的两种方式
instance.method(arg...)
class .method(instance, arg...)
#-- 抽象超类的实现方法
# (1)某个函数中调用未定义的函数 子类中定义该函数
def delegate( self ):
self .action() # 本类中不定义action函数 所以使用delegate函数时就会出错
# (2)定义action函数 但是返回异常
def action( self ):
raise NotImplementedError( "action must be defined" )
# (3)上述的两种方法还都可以定义实例对象 实际上可以利用@装饰器语法生成不能定义的抽象超类
from abc import ABCMeta, abstractmethod
class Super (metaclass = ABCMeta):
@abstractmethod
def action( self ): pass
x = Super () # 返回 TypeError: Can‘t instantiate abstract class Super with abstract methods action
#-- # OOP和继承: "is-a"的关系
class A(B):
pass
a = A()
isinstance (a, B) # 返回True, A是B的子类 a也是B的一种
# OOP和组合: "has-a"的关系
pass
# OOP和委托: "包装"对象 在Python中委托通常是以"__getattr__"钩子方法实现的, 这个方法会拦截对不存在属性的读取
# 包装类(或者称为代理类)可以使用__getattr__把任意读取转发给被包装的对象
class wrapper:
def __init__( self , object ):
self .wrapped = object
def __getattr( self , attrname):
print ( ‘Trace: ‘ , attrname)
return getattr ( self .wrapped, attrname)
# 注:这里使用getattr(X, N)内置函数以变量名字符串N从包装对象X中取出属性 类似于X.__dict__[N]
x = wrapper([ 1 , 2 , 3 ])
x.append( 4 ) # 返回 "Trace: append" [1, 2, 3, 4]
x = wrapper({ ‘a‘ : 1 , ‘b‘ : 2 })
list (x.keys()) # 返回 "Trace: keys" [‘a‘, ‘b‘]
#-- 类的伪私有属性:使用__attr
class C1:
def __init__( self , name):
self .__name = name # 此时类的__name属性为伪私有属性 原理 它会自动变成self._C1__name = name
def __str__( self ):
return ‘self.name = %s‘ % self .__name
I = C1( ‘tom‘ )
print (I) # 返回 self.name = tom
I.__name = ‘jeey‘ # 这里无法访问 __name为伪私有属性
I._C1__name = ‘jeey‘ # 这里可以修改成功 self.name = jeey
#-- 类方法是对象:无绑定类方法对象 / 绑定实例方法对象
class Spam:
def doit( self , message):
print (message)
def selfless(message)
print (message)
obj = Spam()
x = obj.doit # 类的绑定方法对象 实例 + 函数
x( ‘hello world‘ )
x = Spam.doit # 类的无绑定方法对象 类名 + 函数
x(obj, ‘hello world‘ )
x = Spam.selfless # 类的无绑定方法是函数 在3.0之前无效
x( ‘hello world‘ )
#-- 获取对象信息: 属性和方法
a = MyObject()
dir (a) # 使用dir函数
hasattr (a, ‘x‘ ) # 测试是否有x属性或方法 即a.x是否已经存在
setattr (a, ‘y‘ , 19 ) # 设置属性或方法 等同于a.y = 19
getattr (a, ‘z‘ , 0 ) # 获取属性或方法 如果属性不存在 则返回默认值0
#这里有个小技巧,setattr可以设置一个不能访问到的属性,即只能用getattr获取
setattr (a, "can‘t touch" , 100 ) # 这里的属性名带有空格,不能直接访问
getattr (a, "can‘t touch" , 0 ) # 但是可以用getattr获取
#-- 为类动态绑定属性或方法: MethodType方法
# 一般创建了一个class的实例后, 可以给该实例绑定任何属性和方法, 这就是动态语言的灵活性
class Student( object ):
pass
s = Student()
s.name = ‘Michael‘ # 动态给实例绑定一个属性
def set_age( self , age): # 定义一个函数作为实例方法
self .age = age
from types import MethodType
s.set_age = MethodType(set_age, s) # 给实例绑定一个方法 类的其他实例不受此影响
s.set_age( 25 ) # 调用实例方法
Student.set_age = MethodType(set_age, Student) # 为类绑定一个方法 类的所有实例都拥有该方法
"""类的高级话题----类的高级话题----类的高级话题----类的高级话题----类的高级话题----类的高级话题----类的高级话题----类的高级话题----类的高级话题----类的高级话题"""
#-- 多重继承: "混合类", 搜索方式"从下到上 从左到右 广度优先"
class A(B, C):
pass
#-- 类的继承和子类的初始化
# 1.子类定义了__init__方法时,若未显示调用基类__init__方法,python不会帮你调用。
# 2.子类未定义__init__方法时,python会自动帮你调用首个基类的__init__方法,注意是首个。
# 3.子类显示调用基类的初始化函数:
class FooParent( object ):
def __init__( self , a):
self .parent = ‘I\‘m the Parent.‘
print ( ‘Parent:a=‘ + str (a))
def bar( self , message):
print (message + ‘ from Parent‘ )
class FooChild(FooParent):
def __init__( self , a):
FooParent.__init__( self , a)
print ( ‘Child:a=‘ + str (a))
def bar( self , message):
FooParent.bar( self , message)
print (message + ‘ from Child‘ )
fooChild = FooChild( 10 )
fooChild.bar( ‘HelloWorld‘ )
#-- #实例方法 / 静态方法 / 类方法
class Methods:
def imeth( self , x): print ( self , x) # 实例方法:传入的是实例和数据,操作的是实例的属性
def smeth(x): print (x) # 静态方法:只传入数据 不传入实例,操作的是类的属性而不是实例的属性
def cmeth( cls , x): print ( cls , x) # 类方法:传入的是类对象和数据
smeth = staticmethod (smeth) # 调用内置函数,也可以使用@staticmethod
cmeth = classmethod (cmeth) # 调用内置函数,也可以使用@classmethod
obj = Methods()
obj.imeth( 1 ) # 实例方法调用 <__main__.Methods object...> 1
Methods.imeth(obj, 2 ) # <__main__.Methods object...> 2
Methods.smeth( 3 ) # 静态方法调用 3
obj.smeth( 4 ) # 这里可以使用实例进行调用
Methods.cmeth( 5 ) # 类方法调用 <class ‘__main__.Methods‘> 5
obj.cmeth( 6 ) # <class ‘__main__.Methods‘> 6
#-- 函数装饰器:是它后边的函数的运行时的声明 由@符号以及后边紧跟的"元函数"(metafunction)组成
@staticmethod
def smeth(x): print (x)
# 等同于:
def smeth(x): print (x)
smeth = staticmethod (smeth)
# 同理
@classmethod
def cmeth( cls , x): print (x)
# 等同于
def cmeth( cls , x): print (x)
cmeth = classmethod (cmeth)
#-- 类修饰器:是它后边的类的运行时的声明 由@符号以及后边紧跟的"元函数"(metafunction)组成
def decorator(aClass):.....
@decorator
class C:....
# 等同于:
class C:....
C = decorator(C)
#-- 限制class属性: __slots__属性
class Student:
__slots__ = ( ‘name‘ , ‘age‘ ) # 限制Student及其实例只能拥有name和age属性
# __slots__属性只对当前类起作用, 对其子类不起作用
# __slots__属性能够节省内存
# __slots__属性可以为列表list,或者元组tuple
#-- 类属性高级话题: @property
# 假设定义了一个类:C,该类必须继承自object类,有一私有变量_x
class C( object ):
def __init__( self ):
self .__x = None
# 第一种使用属性的方法
def getx( self ):
return self .__x
def setx( self , value):
self .__x = value
def delx( self ):
del self .__x
x = property (getx, setx, delx, ‘‘)
# property函数原型为property(fget=None,fset=None,fdel=None,doc=None)
# 使用
c = C()
c.x = 100 # 自动调用setx方法
y = c.x # 自动调用getx方法
del c.x # 自动调用delx方法
# 第二种方法使用属性的方法
@property
def x( self ):
return self .__x
@x .setter
def x( self , value):
self .__x = value
@x .deleter
def x( self ):
del self .__x
# 使用
c = C()
c.x = 100 # 自动调用setter方法
y = c.x # 自动调用x方法
del c.x # 自动调用deleter方法
#-- 定制类: 重写类的方法
# (1)__str__方法、__repr__方法: 定制类的输出字符串
# (2)__iter__方法、next方法: 定制类的可迭代性
class Fib( object ):
def __init__( self ):
self .a, self .b = 0 , 1 # 初始化两个计数器a,b
def __iter__( self ):
return self # 实例本身就是迭代对象,故返回自己
def next ( self ):
self .a, self .b = self .b, self .a + self .b
if self .a > 100000 : # 退出循环的条件
raise StopIteration()
return self .a # 返回下一个值
for n in Fib():
print (n) # 使用
# (3)__getitem__方法、__setitem__方法: 定制类的下标操作[] 或者切片操作slice
class Indexer( object ):
def __init__( self ):
self .data = {}
def __getitem__( self , n): # 定义getitem方法
print ( ‘getitem:‘ , n)
return self .data[n]
def __setitem__( self , key, value): # 定义setitem方法
print ( ‘setitem:key = {0}, value = {1}‘ . format (key, value))
self .data[key] = value
test = Indexer()
test[ 0 ] = 1 ; test[ 3 ] = ‘3‘ # 调用setitem方法
print (test[ 0 ]) # 调用getitem方法
# (4)__getattr__方法: 定制类的属性操作
class Student( object ):
def __getattr__( self , attr): # 定义当获取类的属性时的返回值
if attr = = ‘age‘ :
return 25 # 当获取age属性时返回25
raise AttributeError( ‘object has no attribute: %s‘ % attr)
# 注意: 只有当属性不存在时 才会调用该方法 且该方法默认返回None 需要在函数最后引发异常
s = Student()
s.age # s中age属性不存在 故调用__getattr__方法 返回25
# (5)__call__方法: 定制类的‘可调用‘性
class Student( object ):
def __call__( self ): # 也可以带参数
print ( ‘Calling......‘ )
s = Student()
s() # s变成了可调用的 也可以带参数
callable (s) # 测试s的可调用性 返回True
# (6)__len__方法:求类的长度
def __len__( self ):
return len ( self .data)
#-- 动态创建类type()
# 一般创建类 需要在代码中提前定义
class Hello( object ):
def hello( self , name = ‘world‘ ):
print ( ‘Hello, %s.‘ % name)
h = Hello()
h.hello() # Hello, world
type (Hello) # Hello是一个type类型 返回<class ‘type‘>
type (h) # h是一个Hello类型 返回<class ‘Hello‘>
# 动态类型语言中 类可以动态创建 type函数可用于创建新类型
def fn( self , name = ‘world‘ ): # 先定义函数
print ( ‘Hello, %s.‘ % name)
Hello = type ( ‘Hello‘ , ( object ,), dict (hello = fn))
# 创建Hello类 type原型: type(name, bases, dict)
h = Hello() # 此时的h和上边的h一致
"""异常相关----异常相关----异常相关----异常相关----异常相关----异常相关----异常相关----异常相关----异常相关----异常相关----异常相关----异常相关----异常相关"""
#-- #捕获异常:
try :
except : # 捕获所有的异常 等同于except Exception:
except name: # 捕获指定的异常
except name, value: # 捕获指定的异常和额外的数据(实例)
except (name1, name2):
except (name1, name2), value:
except name4 as X:
else : # 如果没有发生异常
finally : # 总会执行的部分
# 引发异常: raise子句(raise IndexError)
raise <instance> # raise instance of a class, raise IndexError()
raise < class > # make and raise instance of a class, raise IndexError
raise # reraise the most recent exception
#-- Python3.x中的异常链: raise exception from otherException
except Exception as X:
raise IndexError( ‘Bad‘ ) from X
#-- assert子句: assert <test>, <data>
assert x < 0 , ‘x must be negative‘
#-- with/as环境管理器:作为常见的try/finally用法模式的替代方案
with expression [as variable], expression [as variable]:
# 例子:
with open ( ‘test.txt‘ ) as myfile:
for line in myfile: print (line)
# 等同于:
myfile = open ( ‘test.txt‘ )
try :
for line in myfile: print (line)
finally :
myfile.close()
#-- 用户自定义异常: class Bad(Exception):.....
"""
Exception超类 / except基类即可捕获到其所有子类
Exception超类有默认的打印消息和状态 当然也可以定制打印显示:
"""
class MyBad(Exception):
def __str__( self ):
return ‘定制的打印消息‘
try :
MyBad()
except MyBad as x:
print (x)
#-- 用户定制异常数据
class FormatError(Exception):
def __init__( self , line , file ):
self .line = line
self . file = file
try :
raise FormatError( 42 , ‘test.py‘ )
except FormatError as X:
print ( ‘Error at ‘ , X. file , X.line)
# 用户定制异常行为(方法):以记录日志为例
class FormatError(Exception):
logfile = ‘formaterror.txt‘
def __init__( self , line , file ):
self .line = line
self . file = file
def logger( self ):
open ( self .logfile, ‘a‘ ).write( ‘Error at ‘ , self . file , self .line)
try :
raise FormatError( 42 , ‘test.py‘ )
except FormatError as X:
X.logger()
#-- 关于sys.exc_info:允许一个异常处理器获取对最近引发的异常的访问
try :
......
except :
# 此时sys.exc_info()返回一个元组(type, value, traceback)
# type:正在处理的异常的异常类型
# value:引发的异常的实例
# traceback:堆栈信息
#-- 异常层次
BaseException
+ - - SystemExit
+ - - KeyboardInterrupt
+ - - GeneratorExit
+ - - Exception
+ - - StopIteration
+ - - ArithmeticError
+ - - AssertionError
+ - - AttributeError
+ - - BufferError
+ - - EOFError
+ - - ImportError
+ - - LookupError
+ - - MemoryError
+ - - NameError
+ - - OSError
+ - - ReferenceError
+ - - RuntimeError
+ - - SyntaxError
+ - - SystemError
+ - - TypeError
+ - - ValueError
+ - - Warning
"""Unicode和字节字符串---Unicode和字节字符串----Unicode和字节字符串----Unicode和字节字符串----Unicode和字节字符串----Unicode和字节字符串----Unicode和字节字符串"""
#-- Python的字符串类型
"""Python2.x"""
# 1.str表示8位文本和二进制数据
# 2.unicode表示宽字符Unicode文本
"""Python3.x"""
# 1.str表示Unicode文本(8位或者更宽)
# 2.bytes表示不可变的二进制数据
# 3.bytearray是一种可变的bytes类型
#-- 字符编码方法
"""ASCII""" # 一个字节,只包含英文字符,0到127,共128个字符,利用函数可以进行字符和数字的相互转换
ord ( ‘a‘ ) # 字符a的ASCII码为97,所以这里返回97
chr ( 97 ) # 和上边的过程相反,返回字符‘a‘
"""Latin-1""" # 一个字节,包含特殊字符,0到255,共256个字符,相当于对ASCII码的扩展
chr ( 196 ) # 返回一个特殊字符:Ä
"""Unicode""" # 宽字符,一个字符包含多个字节,一般用于亚洲的字符集,比如中文有好几万字
"""UTF-8""" # 可变字节数,小于128的字符表示为单个字节,128到0X7FF之间的代码转换为两个字节,0X7FF以上的代码转换为3或4个字节
# 注意:可以看出来,ASCII码是Latin-1和UTF-8的一个子集
# 注意:utf-8是unicode的一种实现方式,unicode、gbk、gb2312是编码字符集
#-- 查看Python中的字符串编码名称,查看系统的编码
import encodings
help (encoding)
import sys
sys.platform # ‘win64‘
sys.getdefaultencoding() # ‘utf-8‘
sys.getdefaultencoding() # 返回当前系统平台的编码类型
sys.getsizeof( object ) # 返回object占有的bytes的大小
#-- 源文件字符集编码声明: 添加注释来指定想要的编码形式 从而改变默认值 注释必须出现在脚本的第一行或者第二行
"""说明:其实这里只会检查#和coding:utf-8,其余的字符都是为了美观加上的"""
# _*_ coding: utf-8 _*_
# coding = utf-8
#-- #编码: 字符串 --> 原始字节 #解码: 原始字节 --> 字符串
#-- Python3.x中的字符串应用
s = ‘...‘ # 构建一个str对象,不可变对象
b = b ‘...‘ # 构建一个bytes对象,不可变对象
s[ 0 ], b[ 0 ] # 返回(‘.‘, 113)
s[ 1 :], b[ 1 :] # 返回(‘..‘, b‘..‘)
B = B """
xxxx
yyyy
"""
# B = b‘\nxxxx\nyyyy\n‘
# 编码,将str字符串转化为其raw bytes形式:
str .encode(encoding = ‘utf-8‘ , errors = ‘strict‘ )
bytes( str , encoding)
# 编码例子:
S = ‘egg‘
S.encode() # b‘egg‘
bytes(S, encoding = ‘ascii‘ ) # b‘egg‘
# 解码,将raw bytes字符串转化为str形式:
bytes.decode(encoding = ‘utf-8‘ , errors = ‘strict‘ )
str (bytes_or_buffer[, encoding[, errors]])
# 解码例子:
B = b ‘spam‘
B.decode() # ‘spam‘
str (B) # "b‘spam‘",不带编码的str调用,结果为打印该bytes对象
str (B, encoding = ‘ascii‘ ) # ‘spam‘,带编码的str调用,结果为转化该bytes对象
#-- Python2.x的编码问题
u = u ‘汉‘
print repr (u) # u‘\xba\xba‘
s = u.encode( ‘UTF-8‘ )
print repr (s) # ‘\xc2\xba\xc2\xba‘
u2 = s.decode( ‘UTF-8‘ )
print repr (u2) # u‘\xba\xba‘
# 对unicode进行解码是错误的
s2 = u.decode( ‘UTF-8‘ ) # UnicodeEncodeError: ‘ascii‘ codec can‘t encode characters in position 0-1: ordinal not in range(128)
# 同样,对str进行编码也是错误的
u2 = s.encode( ‘UTF-8‘ ) # UnicodeDecodeError: ‘ascii‘ codec can‘t decode byte 0xc2 in position 0: ordinal not in range(128)
#-- bytes对象
B = b ‘abc‘
B = bytes( ‘abc‘ , ‘ascii‘ )
B = bytes([ 97 , 98 , 99 ])
B = ‘abc‘ .encode()
# bytes对象的方法调用基本和str类型一致 但:B[0]返回的是ASCII码值97, 而不是b‘a‘
#-- #文本文件: 根据Unicode编码来解释文件内容,要么是平台的默认编码,要么是指定的编码类型
# 二进制文件:表示字节值的整数的一个序列 open(‘bin.txt‘, ‘rb‘)
#-- Unicode文件
s = ‘A\xc4B\xe8C‘ # s = ‘A?BèC‘ len(s) = 5
#手动编码
l = s.encode( ‘latin-1‘ ) # l = b‘A\xc4B\xe8C‘ len(l) = 5
u = s.encode( ‘utf-8‘ ) # u = b‘A\xc3\x84B\xc3\xa8C‘ len(u) = 7
#文件输出编码
open ( ‘latindata‘ , ‘w‘ , encoding = ‘latin-1‘ ).write(s)
l = open ( ‘latindata‘ , ‘rb‘ ).read() # l = b‘A\xc4B\xe8C‘ len(l) = 5
open ( ‘uft8data‘ , ‘w‘ , encoding = ‘utf-8‘ ).write(s)
u = open ( ‘uft8data‘ , ‘rb‘ ).read() # u = b‘A\xc3\x84B\xc3\xa8C‘ len(u) = 7
#文件输入编码
s = open ( ‘latindata‘ , ‘r‘ , encoding = ‘latin-1‘ ).read() # s = ‘A?BèC‘ len(s) = 5
s = open ( ‘latindata‘ , ‘rb‘ ).read().decode( ‘latin-1‘ ) # s = ‘A?BèC‘ len(s) = 5
s = open ( ‘utf8data‘ , ‘r‘ , encoding = ‘utf-8‘ ).read() # s = ‘A?BèC‘ len(s) = 5
s = open ( ‘utf8data‘ , ‘rb‘ ).read().decode( ‘utf-8‘ ) # s = ‘A?BèC‘ len(s) = 5
"""其他----其他----其他----其他----其他----其他----其他----其他----其他----其他----其他----其他----其他----其他----其他----其他----其他----其他----其他"""
#-- Python实现任意深度的赋值 例如a[0] = ‘value1‘; a[1][2] = ‘value2‘; a[3][4][5] = ‘value3‘
class MyDict( dict ):
def __setitem__( self , key, value): # 该函数不做任何改动 这里只是为了输出
print ( ‘setitem:‘ , key, value, self )
super ().__setitem__(key, value)
def __getitem__( self , item): # 主要技巧在该函数
print ( ‘getitem:‘ , item, self ) # 输出信息
# 基本思路: a[1][2]赋值时 需要先取出a[1] 然后给a[1]的[2]赋值
if item not in self : # 如果a[1]不存在 则需要新建一个dict 并使得a[1] = dict
temp = MyDict() # 新建的dict: temp
super ().__setitem__(item, temp) # 赋值a[1] = temp
return temp # 返回temp 使得temp[2] = value有效
return super ().__getitem__(item) # 如果a[1]存在 则直接返回a[1]
# 例子:
test = MyDict()
test[ 0 ] = ‘test‘
print (test[ 0 ])
test[ 1 ][ 2 ] = ‘test1‘
print (test[ 1 ][ 2 ])
test[ 1 ][ 3 ] = ‘test2‘
print (test[ 1 ][ 3 ])
#-- Python中的多维数组
lists = [ 0 ] * 3 # 扩展list,结果为[0, 0, 0]
lists = [[]] * 3 # 多维数组,结果为[[], [], []],但有问题,往下看
lists[ 0 ].append( 3 ) # 期望看到的结果[[3], [], []],实际结果[[3], [3], [3]],原因:list*n操作,是浅拷贝,如何避免?往下看
lists = [[] for i in range ( 3 )] # 多维数组,结果为[[], [], []]
lists[ 0 ].append( 3 ) # 结果为[[3], [], []]
lists[ 1 ].append( 6 ) # 结果为[[3], [6], []]
lists[ 2 ].append( 9 ) # 结果为[[3], [6], [9]]
lists = [[[] for j in range ( 4 )] for i in range ( 3 )] # 3行4列,且每一个元素为[]
|