NLP入门(六)pyltp的介绍与使用

pyltp的简介

??语言技术平台(LTP)经过哈工大社会计算与信息检索研究中心 11 年的持续研发和推广, 是国内外最具影响力的中文处理基础平台。它提供的功能包括中文分词、词性标注、命名实体识别、依存句法分析、语义角色标注等。

??pyltp 是 LTP 的 Python 封装,同时支持Python2和Python3版本。Python3的安装方法为:

pip3 install pyltp

??在使用该模块前,需要下载完整的模型文件,文件下载地址为:https://pan.baidu.com/share/link?shareid=1988562907&uk=2738088569#list/path=%2F 。pyltp 的所有输入的分析文本和输出的结果的编码均为 UTF-8。模型的数据文件如下:

其中,cws.model用于分词模型,lexicon.txt为分词时添加的用户字典,ner.model为命名实体识别模型,parser.model为依存句法分析模型,pisrl.model为语义角色标注模型,pos为词性标注模型。

pyltp的使用

??pyltp的使用示例项目结构如下:

分句

??分句指的是将一段话或一片文章中的文字按句子分开,按句子形成独立的单元。示例的Python代码sentenct_split.py如下:

# -*- coding: utf-8 -*-

from pyltp import SentenceSplitter

# 分句
doc = ‘据韩联社12月28日反映,美国防部发言人杰夫·莫莱尔27日表示,美国防部长盖茨将于2011年1月14日访问韩国。‘       ‘盖茨原计划从明年1月9日至14日陆续访问中国和日本,目前,他决定在行程中增加对韩国的访问。莫莱尔表示,‘       ‘盖茨在访韩期间将会晤韩国国防部长官金宽镇,就朝鲜近日的行动交换意见,同时商讨加强韩美两军同盟关系等问题,‘       ‘拟定共同应对朝鲜挑衅和核计划的方案。‘
sents = SentenceSplitter.split(doc)  # 分句

for sent in sents:
    print(sent)

输出结果如下:

据韩联社12月28日反映,美国防部发言人杰夫·莫莱尔27日表示,美国防部长盖茨将于2011年1月14日访问韩国。
盖茨原计划从明年1月9日至14日陆续访问中国和日本,目前,他决定在行程中增加对韩国的访问。
莫莱尔表示,盖茨在访韩期间将会晤韩国国防部长官金宽镇,就朝鲜近日的行动交换意见,同时商讨加强韩美两军同盟关系等问题,拟定共同应对朝鲜挑衅和核计划的方案。
分词

??分词指的是将一句话按词语分开,按词语形成独立的单元。示例的Python代码words_split.py如下:

# -*- coding: utf-8 -*-

import os
from pyltp import Segmentor

cws_model_path = os.path.join(os.path.dirname(__file__), ‘data/cws.model‘)  # 分词模型路径,模型名称为`cws.model`
lexicon_path = os.path.join(os.path.dirname(__file__), ‘data/lexicon.txt‘)  # 参数lexicon是自定义词典的文件路径

segmentor = Segmentor()
segmentor.load_with_lexicon(cws_model_path, lexicon_path)

sent = ‘据韩联社12月28日反映,美国防部发言人杰夫·莫莱尔27日表示,美国防部长盖茨将于2011年1月14日访问韩国。‘
words = segmentor.segment(sent)  # 分词

print(‘/‘.join(words))

segmentor.release()

输出的结果如下:

据/韩联社/12月/28日/反映/,/美/国防部/发言人/杰夫·莫莱尔/27日/表示/,/美/国防部长/盖茨/将/于/2011年/1月/14日/访问/韩国/。
词性标注

??词性标注指的是一句话分完词后,制定每个词语的词性。示例的Python代码postagger.py如下:

# -*- coding: utf-8 -*-

import os
from pyltp import Segmentor, Postagger

# 分词
cws_model_path = os.path.join(os.path.dirname(__file__), ‘data/cws.model‘)  # 分词模型路径,模型名称为`cws.model`
lexicon_path = os.path.join(os.path.dirname(__file__), ‘data/lexicon.txt‘)  # 参数lexicon是自定义词典的文件路径

segmentor = Segmentor()
segmentor.load_with_lexicon(cws_model_path, lexicon_path)

sent = ‘据韩联社12月28日反映,美国防部发言人杰夫·莫莱尔27日表示,美国防部长盖茨将于2011年1月14日访问韩国。‘
words = segmentor.segment(sent)  # 分词

# 词性标注
pos_model_path = os.path.join(os.path.dirname(__file__), ‘data/pos.model‘)  # 词性标注模型路径,模型名称为`pos.model`

postagger = Postagger()  # 初始化实例
postagger.load(pos_model_path)  # 加载模型
postags = postagger.postag(words)  # 词性标注

for word, postag in zip(words, postags):
    print(word, postag)

# 释放模型
segmentor.release()
postagger.release()

‘‘‘
词性标注结果说明
https://ltp.readthedocs.io/zh_CN/latest/appendix.html#id3
‘‘‘

输出结果如下:

据 p
韩联社 ni
12月 nt
28日 nt
反映 v
, wp
美 j
国防部 n
发言人 n
杰夫·莫莱尔 nh
27日 nt
表示 v
, wp
美 j
国防部长 n
盖茨 nh
将 d
于 p
2011年 nt
1月 nt
14日 nt
访问 v
韩国 ns
。 wp

词性标注结果可参考网址:https://ltp.readthedocs.io/zh_CN/latest/appendix.html

命名实体识别

??命名实体识别(NER)指的是识别出一句话或一段话或一片文章中的命名实体,比如人名,地名,组织机构名。示例的Python代码ner.py如下:

# -*- coding: utf-8 -*-

import os
from pyltp import Segmentor, Postagger

# 分词
cws_model_path = os.path.join(os.path.dirname(__file__), ‘data/cws.model‘)  # 分词模型路径,模型名称为`cws.model`
lexicon_path = os.path.join(os.path.dirname(__file__), ‘data/lexicon.txt‘)  # 参数lexicon是自定义词典的文件路径

segmentor = Segmentor()
segmentor.load_with_lexicon(cws_model_path, lexicon_path)

sent = ‘据韩联社12月28日反映,美国防部发言人杰夫·莫莱尔27日表示,美国防部长盖茨将于2011年1月14日访问韩国。‘
words = segmentor.segment(sent)  # 分词

# 词性标注
pos_model_path = os.path.join(os.path.dirname(__file__), ‘data/pos.model‘)  # 词性标注模型路径,模型名称为`pos.model`

postagger = Postagger()  # 初始化实例
postagger.load(pos_model_path)  # 加载模型
postags = postagger.postag(words)  # 词性标注

ner_model_path = os.path.join(os.path.dirname(__file__), ‘data/ner.model‘)   # 命名实体识别模型路径,模型名称为`pos.model`

from pyltp import NamedEntityRecognizer
recognizer = NamedEntityRecognizer() # 初始化实例
recognizer.load(ner_model_path)  # 加载模型
# netags = recognizer.recognize(words, postags)  # 命名实体识别

# 提取识别结果中的人名,地名,组织机构名

persons, places, orgs = set(), set(), set()

netags = list(recognizer.recognize(words, postags))  # 命名实体识别
print(netags)
# print(netags)
i = 0
for tag, word in zip(netags, words):
    j = i
    # 人名
    if ‘Nh‘ in tag:
        if str(tag).startswith(‘S‘):
            persons.add(word)
        elif str(tag).startswith(‘B‘):
            union_person = word
            while netags[j] != ‘E-Nh‘:
                j += 1
                if j < len(words):
                    union_person += words[j]
            persons.add(union_person)
    # 地名
    if ‘Ns‘ in tag:
        if str(tag).startswith(‘S‘):
            places.add(word)
        elif str(tag).startswith(‘B‘):
            union_place = word
            while netags[j] != ‘E-Ns‘:
                j += 1
                if j < len(words):
                    union_place += words[j]
            places.add(union_place)
    # 机构名
    if ‘Ni‘ in tag:
        if str(tag).startswith(‘S‘):
            orgs.add(word)
        elif str(tag).startswith(‘B‘):
            union_org = word
            while netags[j] != ‘E-Ni‘:
                j += 1
                if j < len(words):
                    union_org += words[j]
            orgs.add(union_org)

    i += 1

print(‘人名:‘, ‘,‘.join(persons))
print(‘地名:‘, ‘,‘.join(places))
print(‘组织机构:‘, ‘,‘.join(orgs))

# 释放模型
segmentor.release()
postagger.release()
recognizer.release()

输出的结果如下:

[‘O‘, ‘S-Ni‘, ‘O‘, ‘O‘, ‘O‘, ‘O‘, ‘B-Ni‘, ‘E-Ni‘, ‘O‘, ‘S-Nh‘, ‘O‘, ‘O‘, ‘O‘, ‘S-Ns‘, ‘O‘, ‘S-Nh‘, ‘O‘, ‘O‘, ‘O‘, ‘O‘, ‘O‘, ‘O‘, ‘S-Ns‘, ‘O‘]
人名: 杰夫·莫莱尔,盖茨
地名: 美,韩国
组织机构: 韩联社,美国防部

命名实体识别结果可参考网址:https://ltp.readthedocs.io/zh_CN/latest/appendix.html

依存句法分析

??依存语法 (Dependency Parsing, DP) 通过分析语言单位内成分之间的依存关系揭示其句法结构。 直观来讲,依存句法分析识别句子中的“主谓宾”、“定状补”这些语法成分,并分析各成分之间的关系。示例的Python代码parser.py代码如下:

# -*- coding: utf-8 -*-

import os
from pyltp import Segmentor, Postagger, Parser

# 分词
cws_model_path = os.path.join(os.path.dirname(__file__), ‘data/cws.model‘)  # 分词模型路径,模型名称为`cws.model`
lexicon_path = os.path.join(os.path.dirname(__file__), ‘data/lexicon.txt‘)  # 参数lexicon是自定义词典的文件路径

segmentor = Segmentor()
segmentor.load_with_lexicon(cws_model_path, lexicon_path)

sent = ‘据韩联社12月28日反映,美国防部发言人杰夫·莫莱尔27日表示,美国防部长盖茨将于2011年1月14日访问韩国。‘
words = segmentor.segment(sent)  # 分词

# 词性标注
pos_model_path = os.path.join(os.path.dirname(__file__), ‘data/pos.model‘)  # 词性标注模型路径,模型名称为`pos.model`

postagger = Postagger()  # 初始化实例
postagger.load(pos_model_path)  # 加载模型
postags = postagger.postag(words)  # 词性标注

# 依存句法分析
par_model_path = os.path.join(os.path.dirname(__file__), ‘data/parser.model‘)  # 模型路径,模型名称为`parser.model`

parser = Parser() # 初始化实例
parser.load(par_model_path)  # 加载模型
arcs = parser.parse(words, postags)  # 句法分析

rely_id = [arc.head for arc in arcs]  # 提取依存父节点id
relation = [arc.relation for arc in arcs]  # 提取依存关系
heads = [‘Root‘ if id == 0 else words[id-1] for id in rely_id]  # 匹配依存父节点词语

for i in range(len(words)):
    print(relation[i] + ‘(‘ + words[i] + ‘, ‘ + heads[i] + ‘)‘)

# 释放模型
segmentor.release()
postagger.release()
parser.release()

输出结果如下:

ADV(据, 表示)
SBV(韩联社, 反映)
ATT(12月, 28日)
ADV(28日, 反映)
POB(反映, 据)
WP(,, 据)
ATT(美, 国防部)
ATT(国防部, 发言人)
ATT(发言人, 杰夫·莫莱尔)
SBV(杰夫·莫莱尔, 表示)
ADV(27日, 表示)
HED(表示, Root)
WP(,, 表示)
ATT(美, 国防部长)
ATT(国防部长, 盖茨)
SBV(盖茨, 访问)
ADV(将, 访问)
ADV(于, 访问)
ATT(2011年, 14日)
ATT(1月, 14日)
POB(14日, 于)
VOB(访问, 表示)
VOB(韩国, 访问)
WP(。, 表示)

依存句法分析结果可参考网址:https://ltp.readthedocs.io/zh_CN/latest/appendix.html

语义角色标注

??语义角色标注是实现浅层语义分析的一种方式。在一个句子中,谓词是对主语的陈述或说明,指出“做什么”、“是什么”或“怎么样,代表了一个事件的核心,跟谓词搭配的名词称为论元。语义角色是指论元在动词所指事件中担任的角色。主要有:施事者(Agent)、受事者(Patient)、客体(Theme)、经验者(Experiencer)、受益者(Beneficiary)、工具(Instrument)、处所(Location)、目标(Goal)和来源(Source)等。示例的Python代码rolelabel.py如下:

# -*- coding: utf-8 -*-

import os
from pyltp import Segmentor, Postagger, Parser, SementicRoleLabeller

# 分词
cws_model_path = os.path.join(os.path.dirname(__file__), ‘data/cws.model‘)  # 分词模型路径,模型名称为`cws.model`
lexicon_path = os.path.join(os.path.dirname(__file__), ‘data/lexicon.txt‘)  # 参数lexicon是自定义词典的文件路径

segmentor = Segmentor()
segmentor.load_with_lexicon(cws_model_path, lexicon_path)

sent = ‘据韩联社12月28日反映,美国防部发言人杰夫·莫莱尔27日表示,美国防部长盖茨将于2011年1月14日访问韩国。‘
words = segmentor.segment(sent)  # 分词

# 词性标注
pos_model_path = os.path.join(os.path.dirname(__file__), ‘data/pos.model‘)  # 词性标注模型路径,模型名称为`pos.model`

postagger = Postagger()  # 初始化实例
postagger.load(pos_model_path)  # 加载模型
postags = postagger.postag(words)  # 词性标注

# 依存句法分析
par_model_path = os.path.join(os.path.dirname(__file__), ‘data/parser.model‘)  # 模型路径,模型名称为`parser.model`

parser = Parser() # 初始化实例
parser.load(par_model_path)  # 加载模型
arcs = parser.parse(words, postags)  # 句法分析

# 语义角色标注
srl_model_path = os.path.join(os.path.dirname(__file__), ‘data/pisrl.model‘)  # 语义角色标注模型目录路径
labeller = SementicRoleLabeller() # 初始化实例
labeller.load(srl_model_path)  # 加载模型
roles = labeller.label(words, postags, arcs)  # 语义角色标注

# 打印结果
for role in roles:
    print(words[role.index], end=‘ ‘)
    print(role.index, "".join(["%s:(%d,%d)" % (arg.name, arg.range.start, arg.range.end) for arg in role.arguments]))

# 释放模型
segmentor.release()
postagger.release()
parser.release()
labeller.release()

输出结果如下:

反映 4 A0:(1,1)A0:(2,3)
表示 11 MNR:(0,5)A0:(6,9)TMP:(10,10)A1:(13,22)
访问 21 A0:(13,15)ADV:(16,16)TMP:(17,20)A1:(22,22)

总结

??本文介绍了中文NLP的一个杰出工具pyltp,并给出了该模块的各个功能的一个示例,希望能给读者一些思考与启示。本文到此结束,感谢大家阅读~

注意:本人现已开通微信公众号: Python爬虫与算法(微信号为:easy_web_scrape), 欢迎大家关注哦~~

原文地址:https://www.cnblogs.com/jclian91/p/10343078.html

时间: 2024-10-12 06:52:22

NLP入门(六)pyltp的介绍与使用的相关文章

Python爬虫入门六之Cookie的使用

大家好哈,上一节我们研究了一下爬虫的异常处理问题,那么接下来我们一起来看一下Cookie的使用. 为什么要使用Cookie呢? Cookie,指某些网站为了辨别用户身份.进行session跟踪而储存在用户本地终端上的数据(通常经过加密) 比如说有些网站需要登录后才能访问某个页面,在登录之前,你想抓取某个页面内容是不允许的.那么我们可以利用Urllib2库保存我们登录的Cookie,然后再抓取其他页面就达到目的了. 在此之前呢,我们必须先介绍一个opener的概念. 1.Opener 当你获取一个

NLP入门(八)使用CRF++实现命名实体识别(NER)

CRF与NER简介 ??CRF,英文全称为conditional random field, 中文名为条件随机场,是给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型,其特点是假设输出随机变量构成马尔可夫(Markov)随机场. ??较为简单的条件随机场是定义在线性链上的条件随机场,称为线性链条件随机场(linear chain conditional random field). 线性链条件随机场可以用于序列标注等问题,而本文需要解决的命名实体识别(NER)任务正好可通过序列标注方

01-区块链入门之 区块链介绍一-大叔思维

1.区块链技术是什么? 总的来说,区块链是一套协议,一组规范,而不是具体代码.项目. 理解了这套协议,你可以基于现有的技术,以不同的语言去实现它.我们也无法用一句简单的话去概况什么是区块链,站的角度不同,得到的结论也不一样. 金融业: 区块链是一个分布式的账本,是一个分布式的银行记账系统. 密码学者:区块链是使用密码学构建的去信任网络. 码农:区块链就是一个确保最终一致性的分布式数据库. 维基百科:区块链(Blockchain)是一种分布式数据库,起源自比特币.区块链是一串使用密码学方法相关联产

漫游Kafka入门篇之简单介绍

原文地址:http://blog.csdn.net/honglei915/article/details/37564521 介绍 Kafka是一个分布式的.可分区的.可复制的消息系统.它提供了普通消息系统的功能,但具有自己独特的设计.这个独特的设计是什么样的呢? 首先让我们看几个基本的消息系统术语: Kafka将消息以topic为单位进行归纳. 将向Kafka topic发布消息的程序成为producers. 将预订topics并消费消息的程序成为consumer. Kafka以集群的方式运行,

第六章 图标介绍

Java 类相关图标介绍 ? ? 官网地址: http://www.jetbrains.com/idea/webhelp/symbols.html 对于各个图标,上图的 Description 写得非常详细,但是有几个还是需要进行特别的说明下. Source root,你可以理解为源目录,源码的作用就是用来专门放 Java 类文件,相对于编译出来的 class 文件而言,它就是源.我们一般默认名字叫 src 的目录就是源目录,但是其实并不是这样的,在 IntelliJ IDEA 中,即使叫 sr

DevExpress XtraReports 入门六 控件以程序方式创建一个 交叉表 报表

原文:DevExpress XtraReports 入门六 控件以程序方式创建一个 交叉表 报表 本文只是为了帮助初次接触或是需要DevExpress XtraReports报表的人群使用的,为了帮助更多的人不会像我这样浪费时间才写的这篇文章,高手不想的看请路过 本文内容来DevExpress XtraReports帮助文档,如看过类似的请略过. 废话少说 开始正事 在继续本示例之前,要把所有 必需的程序集 添加到项目的 引用 列表中,并且把一个按钮拖放到窗体上. 然后,以下列方式接管此按钮的

SD卡中FAT32文件格式高速入门(图文具体介绍)

说明: MBR :Master Boot Record ( 主引导记录) DBR :DOS Boot Record ( 引导扇区) FAT :File Allocation Table ( 文件分配表) 硬件:本文SD卡为Kingston 4GB,FAT32格式,簇大小4KB,每扇区512字节. 第一章 硬盘结构与SD卡结构 1.1 硬盘介绍 1.1硬盘结构 假设你熟悉硬盘结构跳过本节.下图是硬盘的结构,假设你仅仅是为了学习SD卡FAT32文件系统的话,这里你仅仅须要注意硬盘排序结构:主引导记录

[WebGL入门]六,顶点和多边形

注:文章译自http://wgld.org/,原作者杉本雅広(doxas),文章中如果有我的额外说明,我会加上[lufy:],另外,鄙人webgl研究还不够深入,一些专业词语,如果翻译有误,欢迎大家指正. 可以在三维空间中描画的东西 要说在WebGL的世界里能够描画什么,其实任何东西都可以描画.而描画的最基本的东西就是下面几种. ?点 ?线段 ?三角形 虽然在OpenGL中提供了矩形的绘制,但是WebGL中基本上只能绘制上面的三种类型.和二维世界不同,比如像HTML中的img标签那样,简单的在画

Perl入门(六) Perl方法的使用

 1.定义一个方法 Perl使用sub定义方法. 语法: sub 方法名称{方法体} 2.调用一个方法 Perl直接使用方法名称调用方法. 调用方式有以下四种: 方法名称: &方法名称: 方法名称(); &方法名称(); 说明:方法调用可以再任何位置,可以在方法前.后调用,也可以在方法体内部调用. 3.传递参数 Perl通过方法名后面的括号将参数列表传递到方法体内.例如:function_name("param1","param2"...); 方

AppleWatch开发入门六——Glance(预览)扩展的应用

AppleWatch开发入门六--Glance(预览)扩展的应用 一.简介 Glance是watchOS中类似iOS的today插件一样的预览扩展.提供了Glance功能的WatchApp可以在手表主页上唤起Glance,展示app相关信息,然而这个扩展只能作为展示作用,并不能进行太多的交互,界面的布局也有很大的限制,因此,Glance的应用主要在于展示备忘信息等.特点如下: 1.扩展的样式布局我们并不能完全个性化,只能通过系统模板来布局. 2.扩展中不能添加交互功能,只能展示信息,点击界面间唤