动态规划——DP算法(Dynamic Programing)

一、斐波那契数列(递归VS动态规划)

1、斐波那契数列——递归实现(python语言)——自顶向下

递归调用是非常耗费内存的,程序虽然简洁可是算法复杂度为O(2^n),当n很大时,程序运行很慢,甚至内存爆满。

1 def fib(n):
2     #终止条件,也就是递归出口
3     if n == 0 or n == 1:
4         return 1
5     else:
6         #递归条件
7         return (fib(n-1) + fib(n - 2))

2、斐波那契数列——动态规划实现(python语言)——自底向上

动态规划——将需要重复计算的问题保存起来,不需要下次重新计算。对于斐波那契数列,算法复杂度为O(n)。

1 def dp_fib(n):
2     #初始化一个数组,用于存储记录计算的结果。
3     res = [None] * (n + 1)
4     #前两项设置为1。
5     res[0] = res[1] = 1
6     #自底向上,将计算结果存入数组内。
7     for i in range(2, (n + 1)):
8         res[i] = res[i-1] + res[i-2]
9     return res[n]

3、方法概要

  (1)构造一个公式,它表示一个问题的解是与它的子问题的解相关的公式:

     

  (2)为这些子问题做索引,以便于它们能够在表中更好的存储与检索(用数组存储)。

  (3)以自底向上的方法来填写这个表格;首先填写最小的子问题的解。

  (4)这就保证了当我们解决一个特殊的子问题时,可以利用比它更小的所有可利用的子问题的解。

总之,因为在上世纪40年代(计算机普及很少时),这些规划设计是与“列表”方法相关的,因此被称为动态规划——Dynamic Programing。

二、动态规划算法——思想简介

1、DP算法思想

  (1)将待求解的问题分解称若干个子问题,并存储子问题的解而避免计算重复的子问题,并由子问题的解得到原问题的解。

   (2)动态规划算法通常用于求解具有某种最有性质的问题。

   (3)动态规划算法的基本要素:最优子结构性质和重叠子问题。

      最优子结构性质:问题的最优解包含着它的子问题的最优解。即不管前面的策略如何,此后的决策必须是基于当前状态(由上一次的决策产生)的最优决策。

      重叠子问题:在用递归算法自顶向下解问题时,每次产生的子问题并不总是新问题,有些问题被反复计算多次。对每个子问题只解一次,然后将其解保存起来,

            以后再遇到同样的问题时就可以直接引用,不必重新求解。

2、DP算法——解决问题的基本特征

  (1)动态规划一般求解最值(最优、最大、最小、最长)问题;

   (2)动态规划解决 的问题一般是离散的,可以分解的(划分阶段的)。

   (3)动态规划结局的问题必须包含最优子结构,即可以有(n-1)的最优推导出n的最优。

3、DP算法——解决问题的基本步骤

  动态规划算法的四个步骤:

    (1)刻画最优解的结构特性。(一维、二维、三维数组);

    (2)递归的定义最优解。(状态转移方程)

    (3)以自底向上的方法来计算最优解。

    (4)从计算得到的解来构造一个最优解。

 4、求解例子——求阶乘 n!

 1 #递归实现求阶乘
 2 def multiply(n):
 3     if n == 0 or n == 1:
 4         return 1
 5     return n * multiply(n -1)
 6
 7
 8 #动态规划实现求阶乘
 9 def dp_multiply(n):
10     temp = [None] * (n + 1)
11     temp[0] = 1
12     temp[1] = 1
13     for i in range(2, n + 1):
14         temp[i] = i * temp[i - 1]
15     return temp[n]

原文地址:https://www.cnblogs.com/xiaoboge/p/10509619.html

时间: 2024-07-31 08:37:46

动态规划——DP算法(Dynamic Programing)的相关文章

c++动态规划dp算法题

问题1:找硬币,换钱的方法 输入: penny数组代表所有货币的面值,正数不重复 aim小于等于1000,代表要找的钱 输出:换钱的方法总数 解法1:经典dp,空间复杂度O(n*aim) class Exchange { public: int countWays(vector<int> penny, int n, int aim) { if (penny.empty()||n == 0) return 0; vector<vector<int> > dp(n,vect

0-1背包的动态规划算法,部分背包的贪心算法和DP算法------算法导论

一.问题描述 0-1背包问题,部分背包问题.分别实现0-1背包的DP算法,部分背包的贪心算法和DP算法. 二.算法原理 (1)0-1背包的DP算法 0-1背包问题:有n件物品和一个容量为W的背包.第i件物品的重量是w[i],价值是v[i].求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大.其中每种物品只有一件,可以选择放或者不放. 最优子结构性质:对于0-1问题,考虑重量至多W的最值钱的一包东西.如果去掉其中一个物品j,余下的必是除j以外的n-1件物品中,可以带走的重量

最大子段和的DP算法设计及其效率测试

表情包形象取自番剧<猫咪日常> 那我也整一个 曾几何时,笔者是个对算法这个概念漠不关心的人,由衷地感觉它就是一种和奥数一样华而不实的存在,即便不使用任何算法的思想我一样能写出能跑的程序 直到一年前帮同学做了个手机游戏demo才发现了一个严峻的问题 为啥*一样的画面能跑出ppt的质感? 虽然发现当时的问题主要出现在使用了一个有bug的API,它导致了低性能的循环调用,但是从那时便开始就重新审视算法了,仅仅一个函数就能大幅地改变程序带给用户的体验这个观念根植心底 后来多多少少也学习了一些算法的知识

Fibonacci斐波拉契数列----------动态规划DP

n==10 20 30 40 50 46 体验一下,感受一下,运行时间 #include <stdio.h>int fib(int n){ if (n<=1)     return 1; else            return fib(n-1)+fib(n-2); }int main( ){ int n; scanf("%d",&n); printf("%d\n" ,fib(n) );} 先 n==10 20 30 40 50 46

动态规划(DP),类似LIS,FatMouse&#39;s Speed

题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1108 解题报告: 1.首先按照weight从小到大排列,weight相同的按照speed从大到小排列; 2.Count[i]表示到第i个老鼠时,所求的最长“速度递减”子序列的长度: 3.path[i]=j是题目的关键,记录在Count[i]=Count[j]时,即最长“速度递减”子序列最后一个老鼠的前一只老鼠的位置 4.递归输出id void output(in

(RQoj 15 采药------rwkj 10.1.5.253 1447) 动态规划 DP 1

#include <iostream>#include <string.h>using namespace std;int dp[105][1005], w[105],v[105],T,M;int max(int x,int y){ return x>y?x:y; } void f( ){ int i,j; for (i=1; i<=M; i++) for (j=0;j<=T; j++) { if (i==0) dp[i][j]=0; else dp[i][j]=

(RQoj 15 采药------rwkj 10.1.5.253 1447) 动态规划 DP 2

70 371 10069 11 2 #include <iostream>#include <string.h>using namespace std;int dp[105][1005], w[105],v[105],T,M;int max(int x,int y){ return x>y?x:y; }void f( ){ int i,j; for (i=M; i>=1; i--) for (j=0;j<=T; j++) { if (i==M+1) dp[i][j

(RQoj 15 采药------rwkj 10.1.5.253 1447) 动态规划 DP 3

#include <iostream>#include <string.h>using namespace std;int dp[1005], w[105],v[105],T,M;int max(int x,int y) { return x>y?x:y; }void f( ){ int i,j; for (i=1; i<=M; i++) for (j=T;j>=0; j--) if (j>=w[i]) dp[j]=max(dp[j],dp[j-w[i]]+

动态规划 DP

动态规划 DP 我们用f[ i ] 表示从 i 点出发到达终点的最多能休息的时间 然后我们发现 状态转移方程f[ i ] = f[ i+1 ] +1 ; 当该点 并没有工作计划时 f[ i ] = max(f[ i+len ],f[ i ]); 当该点 有工作计划时 一个或若干个 1 #include <bits/stdc++.h> 2 #define For(i,j,k) for(int i=j;i<=k;i++) 3 using namespace std ; 4 5 const i