Hadoop Mapreduce 案例 统计手机流量使用情况

需要被统计流量的文件内容如下:

1363157985066 13726230503 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 24 27 2481 24681 200
1363157995052 13826544101 5C-0E-8B-C7-F1-E0:CMCC 120.197.40.4 4 0 264 0 200
1363157991076 13926435656 20-10-7A-28-CC-0A:CMCC 120.196.100.99 2 4 132 1512 200
1363154400022 13926251106 5C-0E-8B-8B-B1-50:CMCC 120.197.40.4 4 0 240 0 200
1363157993044 18211575961 94-71-AC-CD-E6-18:CMCC-EASY 120.196.100.99 iface.qiyi.com 视频网站 15 12 1527 2106 200
1363157995074 84138413 5C-0E-8B-8C-E8-20:7DaysInn 120.197.40.4 122.72.52.12 20 16 4116 1432 200
1363157993055 13560439658 C4-17-FE-BA-DE-D9:CMCC 120.196.100.99 18 15 1116 954 200
1363157995033 15920133257 5C-0E-8B-C7-BA-20:CMCC 120.197.40.4 sug.so.360.cn 信息安全 20 20 3156 2936 200
1363157983019 13719199419 68-A1-B7-03-07-B1:CMCC-EASY 120.196.100.82 4 0 240 0 200
1363157984041 13660577991 5C-0E-8B-92-5C-20:CMCC-EASY 120.197.40.4 s19.cnzz.com 站点统计 24 9 6960 690 200
1363157973098 15013685858 5C-0E-8B-C7-F7-90:CMCC 120.197.40.4 rank.ie.sogou.com 搜索引擎 28 27 3659 3538 200
1363157986029 15989002119 E8-99-C4-4E-93-E0:CMCC-EASY 120.196.100.99 www.umeng.com 站点统计 3 3 1938 180 200
1363157992093 13560439658 C4-17-FE-BA-DE-D9:CMCC 120.196.100.99 15 9 918 4938 200
1363157986041 13480253104 5C-0E-8B-C7-FC-80:CMCC-EASY 120.197.40.4 3 3 180 180 200
1363157984040 13602846565 5C-0E-8B-8B-B6-00:CMCC 120.197.40.4 2052.flash2-http.qq.com 综合门户 15 12 1938 2910 200
1363157995093 13922314466 00-FD-07-A2-EC-BA:CMCC 120.196.100.82 img.qfc.cn 12 12 3008 3720 200
1363157982040 13502468823 5C-0A-5B-6A-0B-D4:CMCC-EASY 120.196.100.99 y0.ifengimg.com 综合门户 57 102 7335 110349 200
1363157986072 18320173382 84-25-DB-4F-10-1A:CMCC-EASY 120.196.100.99 input.shouji.sogou.com 搜索引擎 21 18 9531 2412 200
1363157990043 13925057413 00-1F-64-E1-E6-9A:CMCC 120.196.100.55 t3.baidu.com 搜索引擎 69 63 11058 48243 200
1363157988072 13760778710 00-FD-07-A4-7B-08:CMCC 120.196.100.82 2 2 120 120 200
1363157985066 13726238888 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 24 27 2481 24681 200

其中各个字段的解释如下,要统计手机号的上行流量,下行流量和总流量,其中总流量=上行流量+下行流量

代码如下:

FlowBean:

package com.gec.demo.bean;

import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

/*
* 序列化的类
* */
public class FlowBean implements Writable
{
    //上行流量
    private long upFlow;
    //下行流量
    private long downFlow;
    //总流量
    private long sumFlow;

    public FlowBean() {

    }

    public FlowBean(long upFlow, long downFlow, long sumFlow) {
        this.upFlow = upFlow;
        this.downFlow = downFlow;
        this.sumFlow = sumFlow;
    }

    public void setFlowData(long upFlow, long downFlow)
    {
        this.upFlow=upFlow;
        this.downFlow=downFlow;
        sumFlow=this.upFlow+this.downFlow;
    }

    public long getUpFlow() {
        return upFlow;
    }

    public void setUpFlow(long upFlow) {
        this.upFlow = upFlow;
    }

    public long getDownFlow() {
        return downFlow;
    }

    public void setDownFlow(long downFlow) {
        this.downFlow = downFlow;
    }

    public long getSumFlow() {
        return sumFlow;
    }

    public void setSumFlow(long sumFlow) {
        this.sumFlow = sumFlow;
    }

    //序列化处理
    @Override
    public void write(DataOutput out) throws IOException {

        out.writeLong(this.getUpFlow());
        out.writeLong(this.getDownFlow());
        out.writeLong(this.getSumFlow());
    }

    //反列化处理
    @Override
    public void readFields(DataInput in) throws IOException {

        setUpFlow(in.readLong());
        setDownFlow(in.readLong());
        setSumFlow(in.readLong());
    }

    @Override
    public String toString() {
        return getUpFlow()+"\t"+getDownFlow()+"\t"+getSumFlow();
    }
}

Mapper:

package com.gec.demo;

import com.gec.demo.bean.FlowBean;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.util.StringUtils;

import java.io.IOException;

/*<
    KEYIN
    VALUEIN
    KEYOUT
    VALUEOUT
    */
public class PhoneFlowMapper extends Mapper<LongWritable, Text,Text, FlowBean>
{
    private FlowBean flowBean=new FlowBean();
    private Text keyText=new Text();

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

        //获取行内容
        String line=value.toString();

        String []fields=StringUtils.split(line,‘\t‘);

        //获取手机号
        String phoneNum=fields[1];

        //获取上传流量数据
        long upflow=Long.parseLong(fields[fields.length-3]);
        //获取下载流量数据
        long downflow=Long.parseLong(fields[fields.length-2]);

        flowBean.setFlowData(upflow,downflow);
        keyText.set(phoneNum);

        context.write(keyText,flowBean);

    }
}

Reducer:

package com.gec.demo;

import com.gec.demo.bean.FlowBean;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class PhoneFlowReducer extends Reducer<Text, FlowBean,Text, FlowBean>
{
    private FlowBean flowBean=new FlowBean();

    /**
     *key:phonenum(电话号码)
     *values:
     */
    @Override
    protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {

        long sumDownFlow=0;
        long sumUpFlow=0;

        //统计每台手机所耗的总流量
        for (FlowBean value : values) {

            sumUpFlow+=value.getUpFlow();
            sumDownFlow+=value.getDownFlow();
        }

        flowBean.setFlowData(sumUpFlow,sumDownFlow);

        context.write(key,flowBean);

    }
}

Driver:

package com.gec.demo;

import com.gec.demo.bean.FlowBean;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

import java.io.IOException;

public class PhoneFlowApp {

    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {

        Configuration configuration=new Configuration();

        Job job=Job.getInstance(configuration);

        job.setJarByClass(PhoneFlowApp.class);
        //job.setJar("");

        job.setMapperClass(PhoneFlowMapper.class);
        job.setReducerClass(PhoneFlowReducer.class);

        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(FlowBean.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(TextOutputFormat.class);

        //指定要处理的数据所在的位置
        FileInputFormat.setInputPaths(job, "hdfs://hadoop-001:9000/flowcount/input/HTTP_20130313143750.dat");
        //指定处理完成之后的结果所保存的位置
        FileOutputFormat.setOutputPath(job, new Path("hdfs://hadoop-001:9000/flowcount/output/"));
        //向yarn集群提交这个job
        boolean res = job.waitForCompletion(true);
        System.exit(res?0:1);

    }
}

生成文件的结果如下:

手机号            上行流量     下行流量       总流量

如果要按总流量的多少排序,并按手机号输出到六个不同的文件,有如下代码:

FlowBean:要实现WritableComparable接口
package com.gec.demo.Bean;

import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

public class FlowBean implements WritableComparable<FlowBean> {
    //上行流量
    private  long upFlow;
    //下行流量
    private long downFlow;
    //总流量
    private long sumFlow;

    public FlowBean() {

    }

    public long getUpFlow() {
        return upFlow;
    }

    public void setUpFlow(long upFlow) {
        this.upFlow = upFlow;
    }

    public long getDownFlow() {
        return downFlow;
    }

    public void setDownFlow(long downFlow) {
        this.downFlow = downFlow;
    }

    public long getSumFlow() {
        return sumFlow;
    }

    public void setSumFlow(long sumFlow) {
        this.sumFlow = sumFlow;
    }

    public FlowBean(long upFlow, long downFlow, long sumFlow) {
        this.upFlow = upFlow;
        this.downFlow = downFlow;
        this.sumFlow = sumFlow;
    }
    public void setFlowData(long upFlow,long downFlow){
        this.upFlow=upFlow;
        this.downFlow=downFlow;
        this.sumFlow=this.upFlow+this.downFlow;
    }

    @Override
    public String toString() {
        return getUpFlow()+" "+getDownFlow()+" "+getSumFlow();
    }

    //序列化处理
    @Override
    public void write(DataOutput dataOutput) throws IOException {
        dataOutput.writeLong(this.getUpFlow());
        dataOutput.writeLong(this.getDownFlow());
        dataOutput.writeLong(this.getSumFlow());

    }
    //反序列化处理
    @Override
    public void readFields(DataInput dataInput) throws IOException {
        setUpFlow(dataInput.readLong());
        setDownFlow(dataInput.readLong());
        setSumFlow(dataInput.readLong());
    }

    @Override
    public int compareTo(FlowBean o) {
        if (o.getSumFlow()>this.getSumFlow()){
            return 1;
        }else
            return -1;
    }
}
//FlowPartitioner类继承Partitioner类,可以定义以什么开头的手机号输出到哪个文件
package com.gec.demo.partitioner;

import com.gec.demo.Bean.FlowBean;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;

public class FlowPartitioner extends Partitioner<FlowBean,Text> {
    @Override
    public int getPartition(FlowBean flowBean, Text text, int i) {
        String phoneNum=text.toString();
        String headThreePhoneNum=phoneNum.substring(0,3);
        if(headThreePhoneNum.equals("134")){
            return 0;
        }else if(headThreePhoneNum.equals("135")){
            return 1;
        }else if(headThreePhoneNum.equals("136")){
            return 2;
        }else if(headThreePhoneNum.equals("137")){
            return 3;
        }else if(headThreePhoneNum.equals("138")){
            return 4;
        }else{
            return  5;
        }
    }
}
package com.gec.demo;

import com.gec.demo.Bean.FlowBean;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.util.StringUtils;
import org.mortbay.util.StringUtil;

import java.io.IOException;

public class PhoneFlowMapper extends Mapper<LongWritable, Text,FlowBean,Text> {
    private  FlowBean flowBean=new FlowBean();
    private  Text text=new Text();

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String line=value.toString();
        String[] fields= StringUtils.split(line,‘\t‘);
        String phoneNum=fields[1];
       long upFlow=Long.parseLong(fields[fields.length-3]);
       long downFlow=Long.parseLong(fields[fields.length-2]);
       flowBean.setFlowData(upFlow,downFlow);
       flowBean.setSumFlow(upFlow+downFlow);
       text.set(phoneNum);
       context.write(flowBean,text);
        }

    }
package com.gec.demo;

import com.gec.demo.Bean.FlowBean;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class PhoneFlowReducer extends Reducer<FlowBean,Text,Text,FlowBean> {
    private  FlowBean flowBean=new FlowBean();

    @Override
    protected void reduce(FlowBean key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
        //有没有分组合并操作?

       context.write(values.iterator().next(),key);
    }
}
package com.gec.demo;

import com.gec.demo.Bean.FlowBean;
import com.gec.demo.partitioner.FlowPartitioner;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

import java.io.IOException;

public class PhoneFlowApp  {
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        Configuration configuration=new Configuration();
        Job job=Job.getInstance(configuration);
        job.setJarByClass(PhoneFlowApp.class);
        job.setMapperClass(PhoneFlowMapper.class);
        job.setReducerClass(PhoneFlowReducer.class);
        job.setMapOutputKeyClass(FlowBean.class);
        job.setMapOutputValueClass(Text.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(TextOutputFormat.class);

        job.setPartitionerClass(FlowPartitioner.class);
        job.setNumReduceTasks(6);
        //指定要处理的数据所在的位置
        FileInputFormat.setInputPaths(job, "D://Bigdata//4、mapreduce//day02//HTTP_20130313143750.dat");
        //指定处理完成之后的结果所保存的位置
        FileOutputFormat.setOutputPath(job, new Path("D://Bigdata//4、mapreduce//day02//output"));
        //向yarn集群提交这个job
        boolean res = job.waitForCompletion(true);
        System.exit(res?0:1);

    }
}

原文地址:https://www.cnblogs.com/Transkai/p/10485257.html

时间: 2024-11-05 20:30:56

Hadoop Mapreduce 案例 统计手机流量使用情况的相关文章

统计手机流量

软件流量使用数据保存在 /proc/uid_stat/uid(用户id)/ 下面文件中 /proc/uid_stat/uid/tcp_send        上传流量 /proc/uid_stat/uid/tcp_rcv         下载流量 代码如下 //1.获取一个包管理器. PackageManager pm = getPackageManager(); //2.遍历手机操作系统 获取所有的应用程序的用户ID(uid   ) List<ApplicationInfo> appliac

android获取手机流量使用情况

软件流量使用数据保存在 /proc/uid_stat/uid(用户id)/ 下面文件中 /proc/uid_stat/uid/tcp_send        上传流量 /proc/uid_stat/uid/tcp_rcv         下载流量 关键代码如下: //1.获取一个包管理器. PackageManager pm = getPackageManager(); //2.遍历手机操作系统 获取所有的应用程序的uid List<ApplicationInfo> appliactaionI

Hadoop MapReduce编程 API入门系列之网页流量版本1(二十一)

不多说,直接上代码. 对流量原始日志进行流量统计,将不同省份的用户统计结果输出到不同文件. 代码 package zhouls.bigdata.myMapReduce.areapartition; import java.io.DataInput;import java.io.DataOutput;import java.io.IOException; import org.apache.hadoop.io.Writable;import org.apache.hadoop.io.Writabl

Hadoop MapReduce编程 API入门系列之网页流量版本1(二十二)

不多说,直接上代码. 对流量原始日志进行流量统计,将不同省份的用户统计结果输出到不同文件. 代码 package zhouls.bigdata.myMapReduce.flowsum; import java.io.DataInput;import java.io.DataOutput;import java.io.IOException; import org.apache.hadoop.io.Writable;import org.apache.hadoop.io.WritableCompa

精品软件 推荐 流量报表软件 networx 统计电脑网络用的流量 用手机流量卡的特别有用

介绍一个免费的软件,可以统计电脑每一个网卡的使用流量情况, 用手机流量卡的特别实用 下载地址也可以如下,或者百度中找到:http://www.400gb.com/file/116129429 精品软件 推荐 流量报表软件 networx  统计电脑网络用的流量 用手机流量卡的特别有用

Hadoop MapReduce编程入门案例

Hadoop入门例程简析中 (下面的程序下载地址:http://download.csdn.net/detail/zpcandzhj/7810829) 一.一些说明 (1)Hadoop新旧API的区别 新的API倾向于使用虚类(抽象类),而不是接口,因为这更容易扩展. 例如,可以无需修改类的实现而在虚类中添加一个方法(即用默认的实现). 在新的API中,mapper和reducer现在都是虚类. 新的API 放在org.apache.hadoop.mapreduce 包(和子包)中.之前版本的A

MapReduce 单词统计案例编程

MapReduce 单词统计案例编程 一.在Linux环境安装Eclipse软件 1.   解压tar包 下载安装包eclipse-jee-kepler-SR1-linux-gtk-x86_64.tar.gz到/opt/software目录下. 解压到/opt/tools目录下: [[email protected] tools]$ tar -zxf /opt/sofeware/eclipse-jee-kepler-SR1-linux-gtk-x86_64.tar.gz -C /opt/tool

第2节 mapreduce深入学习:8、手机流量汇总求和

例子:MapReduce综合练习之上网流量统计. 数据格式参见资料夹 需求一:统计求和 统计每个手机号的上行流量总和,下行流量总和,上行总流量之和,下行总流量之和 分析:以手机号码作为key值,上行流量,下行流量,上行总流量,下行总流量四个字段作为value值,然后以这个key,和value作为map阶段的输出,reduce阶段的输入. data_flow.dat内容类似下面的: 1363157985066 13726230503 00-FD-07-A4-72-B8:CMCC 120.196.1

Hadoop MapReduce编程 API入门系列之统计学生成绩版本2(十八)

不多说,直接上代码. 统计出每个年龄段的 男.女 学生的最高分 这里,为了空格符的差错,直接,我们有时候,像如下这样的来排数据. 代码 package zhouls.bigdata.myMapReduce.Gender; import java.io.IOException;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.conf.Configured;import org.apache.hadoop.fs