Codeforces round 1106

Div 2 536

E

傻逼DP直接做

我居然调了1.5h

我真的是太菜了.jpg

堆+扫描线直接维护每个位置的贪心结果

然后要么使用干扰

要么就接受贪心的结果

#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <queue>
#include <iostream>
#include <bitset>
using namespace std;
#define N 100005
#define M 205
#define ll long long
int n,m,K,p[N];ll f[N][M];
struct node{int s,t,d,w;}a[N];
bool cmp(const node &a,const node &b){return a.s==b.s?a.t<b.t:a.s<b.s;}
priority_queue<pair<pair<int ,int > ,int > >q;
int main()
{
    scanf("%d%d%d",&n,&m,&K);memset(f,0x3f,sizeof(f));
    for(int i=1;i<=K;i++)scanf("%d%d%d%d",&a[i].s,&a[i].t,&a[i].d,&a[i].w);sort(a+1,a+K+1,cmp);
    for(int i=1,j=1;i<=n;i++)
    {
        while(a[j].s<=i&&j<=K)q.push(make_pair(make_pair(a[j].w,a[j].d),j)),j++;
        while(!q.empty()&&a[q.top().second].t<i)q.pop();
        if(!q.empty())p[i]=q.top().second;
    }
    f[1][0]=0;
    for(int i=1;i<=n;i++)
        for(int j=0;j<=m;j++)
        {
            int x=p[i];
            f[i+1][j+1]=min(f[i][j],f[i+1][j+1]);
            if(x)f[a[x].d+1][j]=min(f[i][j]+a[x].w,f[a[x].d+1][j]);
            else f[i+1][j]=min(f[i][j],f[i+1][j]);
        }
    ll ans=1ll<<60;
    for(int i=0;i<=m;i++)ans=min(ans,f[n+1][i]);
    printf("%lld\n",ans);
}

F

  • 这不是一个特征多项式优化常系数线性齐次递推裸题嘛!

然后我就开始写了...

然后我发现我不会求$K$次剩余...

然后我就GG了...

所以这个题不用会求$K$次剩余...

那么根据原根的性质,我们可以发现,$K$次剩余可以表达为$\frac{q}{p} \mod 998244352$的形式,其中$q$表达为$m = 3^q \mod 998244353$,$p=k$

如果$K$不存在逆元的话,就没有对应的$K$次剩余...

然后,就可以通过BSGS+exgcd求

所以矩阵乘法就能做的题,为啥我要用特征多项式啊!!!!!

附上代码:

#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <bitset>
#include <map>
using namespace std;
#define N 205
#define ll long long
#define mod 998244353
#define mmod 998244352
int a[N],b[N],mo[N],tmp[N],n,k,m,ans;
int q_pow(int x,int n){int ret=1;for(;n;n>>=1,x=(ll)x*x%mod)if(n&1)ret=(ll)ret*x%mod;return ret;}
void mul(int *a,int *b,int *ret)
{
    memset(tmp,0,sizeof(tmp));
    for(int i=0;i<k;i++)
        for(int j=0;j<k;j++)
            tmp[i+j]=(tmp[i+j]+(ll)a[i]*b[j])%mmod;
    for(int i=(k<<1)-2;i>=k;i--)if(tmp[i])for(int j=1;j<=k;j++)
            tmp[i-j]=(tmp[i-j]-(ll)tmp[i]*mo[k-j])%mmod;
    for(int i=0;i<k;i++)ret[i]=tmp[i];
}
map<int ,int >mp;
int ex_gcd(int a,int b,int &x,int &y)
{
    if(!b)return x=1,y=0,a;int ret=ex_gcd(b,a%b,y,x);
    y=y-a/b*x;return ret;
}
int BSGS(int x)
{
    int s=5000,t=1;
    for(int i=0;i<s;i++)mp[int((ll)t*x%mod)]=i,t=t*3ll%mod;
    for(int i=1,now=1;;i++)
    {
        now=(ll)now*t%mod;
        if(mp.find(now)!=mp.end())return i*s-mp[now];
    }
}
int main()
{
    scanf("%d",&k);
    for(int i=1;i<=k;i++)scanf("%d",&mo[k-i]),mo[k-i]=mmod-mo[k-i];
    scanf("%d%d",&n,&m);b[1]=1;a[0]=1;
    if(k==1)b[0]=mmod-mo[0],b[1]=0;
    for(n--;n;n>>=1){if(n&1)mul(a,b,a);mul(b,b,b);}
    int t=(a[k-1]+mmod)%mmod,x=0,y=0;
    int tt=ex_gcd(t,mmod,x,y),kk=BSGS(m);
    if(kk%tt)return puts("-1"),0;
    x=((ll)x*(kk/tt)%mmod+mmod)%mmod;
    printf("%d\n",q_pow(3,x));
}

原文地址:https://www.cnblogs.com/Winniechen/p/10351925.html

时间: 2024-11-11 17:35:28

Codeforces round 1106的相关文章

Educational Codeforces Round 21 G. Anthem of Berland(dp+kmp)

题目链接:Educational Codeforces Round 21 G. Anthem of Berland 题意: 给你两个字符串,第一个字符串包含问号,问号可以变成任意字符串. 问你第一个字符串最多包含多少个第二个字符串. 题解: 考虑dp[i][j],表示当前考虑到第一个串的第i位,已经匹配到第二个字符串的第j位. 这样的话复杂度为26*n*m*O(fail). fail可以用kmp进行预处理,将26个字母全部处理出来,这样复杂度就变成了26*n*m. 状态转移看代码(就是一个kmp

Codeforces Round #428 (Div. 2)

Codeforces Round #428 (Div. 2) A    看懂题目意思就知道做了 #include<bits/stdc++.h> using namespace std; #pragma comment(linker, "/STACK:102400000,102400000") #define rep(i,a,b) for (int i=a; i<=b; ++i) #define per(i,b,a) for (int i=b; i>=a; --i

Codeforces Round #424 (Div. 2) D. Office Keys(dp)

题目链接:Codeforces Round #424 (Div. 2) D. Office Keys 题意: 在一条轴上有n个人,和m个钥匙,门在s位置. 现在每个人走单位距离需要单位时间. 每个钥匙只能被一个人拿. 求全部的人拿到钥匙并且走到门的最短时间. 题解: 显然没有交叉的情况,因为如果交叉的话可能不是最优解. 然后考虑dp[i][j]表示第i个人拿了第j把钥匙,然后 dp[i][j]=max(val(i,j),min(dp[i-1][i-1~j]))   val(i,j)表示第i个人拿

Codeforces Round #424 (Div. 2) C. Jury Marks(乱搞)

题目链接:Codeforces Round #424 (Div. 2) C. Jury Marks 题意: 给你一个有n个数序列,现在让你确定一个x,使得x通过挨着加这个序列的每一个数能出现所有给出的k个数. 问合法的x有多少个.题目保证这k个数完全不同. 题解: 显然,要将这n个数求一下前缀和,并且排一下序,这样,能出现的数就可以表示为x+a,x+b,x+c了. 这里 x+a,x+b,x+c是递增的.这里我把这个序列叫做A序列 然后对于给出的k个数,我们也排一下序,这里我把它叫做B序列,如果我

Codeforces Round #400 C 前缀和,思维

ICM Technex 2017 and Codeforces Round #400 (Div. 1 + Div. 2, combined) C. Molly's Chemicals 题意:n个数,问有多少个区间的和是k的次方数,即sum([l, r])=k^x, x>=0. abs(k)<=10. tags:一开始O(n^2)统计,果然炸了.. 这题要在统计到第 i 个数时,看s[i]-k^x是否在前面出现过.因为k指数增长很快,这样就是O(n). // #400 #include<b

[Codeforces] Round #352 (Div. 2)

人生不止眼前的狗血,还有远方的狗带 A题B题一如既往的丝帛题 A题题意:询问按照12345678910111213...的顺序排列下去第n(n<=10^3)个数是多少 题解:打表,输出 1 #include<bits/stdc++.h> 2 using namespace std; 3 int dig[10],A[1005]; 4 int main(){ 5 int aa=0; 6 for(int i=1;;i++){ 7 int x=i,dd=0; 8 while(x)dig[++dd

Codeforces Round #273 (Div. 2)

Codeforces Round #273 (Div. 2) 题目链接 A:签到,仅仅要推断总和是不是5的倍数就可以,注意推断0的情况 B:最大值的情况是每一个集合先放1个,剩下都丢到一个集合去,最小值是尽量平均去分 C:假如3种球从小到大是a, b, c,那么假设(a + b) 2 <= c这个比較明显答案就是a + b了.由于c肯定要剩余了,假设(a + b)2 > c的话,就肯定能构造出最优的(a + b + c) / 3,由于肯定能够先拿a和b去消除c,而且控制a和b成2倍关系或者消除

Codeforces Round #339 (Div. 2) B. Gena&#39;s Code

B. Gena's Code It's the year 4527 and the tanks game that we all know and love still exists. There also exists Great Gena's code, written in 2016. The problem this code solves is: given the number of tanks that go into the battle from each country, f

Codeforces Round #315 (Div. 1)

A. Primes or Palindromes? time limit per test 3 seconds memory limit per test 256 megabytes input standard input output standard output Rikhail Mubinchik believes that the current definition of prime numbers is obsolete as they are too complex and un