奇点云行业观察 | 购物中心如何实现高质量数据采集?


?脸识别是线下零售数字化升级的核心抓手,再怎么强调也不为过,?脸算法的升级和智能硬件的普及将真正把Mall的数字化从概念走进现实。抓住她的脸,记住她的路线, 走进她的心田,Mall的运营数字化才能真正登堂入室,请记住一点,有想法做好线下Mall生态的朋友,你要谨慎的不是万达,不是吾悦广场,是BAT等互联网巨头!(本?需要你花费5分钟阅读,?货不解释)

近些年,虽然线上零售对线下零售造成很大的冲击,但在零售总额实际比例中,线下零售占比高达90%,而线上零售只占10%。展望未来,线下零售依然会占零售的重要地位。消费者对吃喝玩乐、生活服务在线上是无法切身体验到的,这种体验式零售业态的典型代表就是购物中心。

1、购物中心发展三阶段
国内购物中心的发展,大致经历了三个阶段:摸索——发展——成熟。

摸索阶段:2000年前的整个20年(1980年——2000年),中国购物中心基本处于萌芽状态,百货成为市场主流,但在营运管理上用百货的运作模式或纯地产思维来管理,往往弱化信息化的建设。

发展阶段:2000年后的10年里面(2000年——2010年),购物中心管理者在思路上逐渐清晰化“统一经营、分散管理”、“百货购物中心化,购物中心百货化”的思维已经深入骨髓,对信息化的要求提出了更高的要求,强调招商、租约、会员及营运的管理。

成熟阶段:2010年开始的近10年(2010年——至今),购物中心进入相对成熟阶段,类型千差万别。购物中心从业者思想从“经营人到经营物”的角度在思考发展变革,全渠道思路已逐步运用于实践,进入“百花齐放、百家争鸣”的阶段。

2、购物中心发展的困局
购物中心经历了多年的高速发展,受到业态饱和度、经济下行、市场疲软、品牌及商场布局同质化等因素影响,购物中心从业者面临巨大的挑战:

招商难:待开发的购物中心数量猛增、竞争激烈、分流严重,导致购物中心招商、营运困境越来越突出;而对已开业的购物中心,由于缺乏数据,无法用数据来指导招商,商场的定位和顾客呈现的数据往往存在巨大差异。

规划难:多数商业地产商过多关注品牌规划而忽略背后的租金规划,找不到合适的信息化手段对业态规划进行有效监控,商场铺位布局由于没有用数据“说话”,造成商铺间的联动效应不强。

营运管理难:业态持续调整,是购物中心租金提升的重要保障,业态调整要考虑租户满意度和顾客满意度,而购物中心租赁为主的业态模式往往缺乏这些数据抓手,从“开业大吉”变成“开业大急”。

3、突破数据掣肘,跨越管理鸿沟
线下购物中心与线上平台最大的区别在于:场景化、多触点。场景化营销是购物中心中最容易理解的着力点,相应的技术难度也较高,需要全触点的数据采集能力,经过标签处理、分析引擎、营销引擎等找到合适的消费者,在合适的时间对他们做适合他们的触发。

运营好购物中心必须要掌握好用户体系、交易体系等,要以数据为驱动、消费者为核心,同时也要不断创新,通过新的触达消费者的方式去适应消费者新的消费习惯。购物中心以消费者大数据驱动精细化运营,这里的消费者大数据包含了消费者的属性、偏好、行为以及各个触点交互产生的数据等数据的采集、加工和整合,购物中心将经营思维从商品出发转变到消费者身上。

目前购物中心销售数据的采集,主要还是以下几种模式:数据填报、接口模式、DATAHUB、下放POS机、微信端录入及数据盒子,这些模式的数据采集无疑都是对数据收集的补充,但是存在的问题也非常突出:成本高、运维重、商户谈判难、易出错、商户扣留小票、易盗刷积分等等,体现的采集模式还是以被动采集为主;对于会员的拓新手段乏力:会费入会、购物入会、邀请加入、合作伙伴入会等等,都缺乏顾客的参与感、互动性及体验性,限制了会员主动入会的热情;由于传统客流技术的局限性(例如红外线客流、WIFI客流),建立不了Face-Id和会员Id的联系,对会员的行为数据根本无法做到准确收集。

怎样才能改变传统模式对于数据采集中遇到的问题,同时又能提高顾客体验?建立一个精细化的数据采集体系尤为必要,借助顾客主动留下消费数据、会员数据,结合后台大数据的技术处理能力,实现对顾客营销的赋能,这无疑是购物中心数据采集技术上的一项巨大提升。

例如上海某购物中心,经过多年连锁化发展经营,会员数据、小票数据、顾客行为等数据采集一直都不理想,对会员的行为数据分析、贴标、AI营销推荐更是无从谈起。

然而购物中心大数据之路的核心难题是数据采集,伴随着AI和大数据愈发成熟,数据采集可基于AI智能终端的互动体验来实现,通过人脸识别和IOT技术打造的多功能魔镜及识客系统多端触达购物中心的消费者,不断沉淀线下可运营数据资产,这些数据资产与该购物中心的数据打通,形成基于 Face ID 的消费品质、消费层级、网购偏好等多维度顾客画像。同时洞察顾客从进入购物中心到离开的每一个行为。借助数据中台处理能力,利用会员的消费数据+行为数据,精准会员贴标、实现AI促销引擎推荐,最终达到会员“一对一”的营销目的,实现购物中心的价值转换。

4、数据采集让资源体现最大价值
购物中心对数据的收集,为后续大数据分析打下了坚实基础,是实现购物中心高效、高质、统一管理和经营的巨大助力,完善的数据采集对购物中心从业者在后续招商、租约、会员、营销、分析无疑有巨大的指导意义。完整的数据采集是大数据分析的基础,也是营收的重要体现;以数据为基础,实现招商的优化、租户的调整及汰换;提升对租户服务能力及广告投放;深度洞察会员,数据化会员的获得率、保持率、贡献率、满意率及流失率,标签化会员,实现会员的数字化营销;监控客单价、客户群组及顾客流向、寻迹等,可以及时调整营销方案和力度。

在消费者体验经济的大趋势下,大数据会帮助购物中心做出更好的决策,提高运营效率,挖掘更多的流量变现能力。

原文地址:https://blog.51cto.com/14210996/2395291

时间: 2024-11-06 03:47:19

奇点云行业观察 | 购物中心如何实现高质量数据采集?的相关文章

【华为云技术分享】如何设计高质量软件-领域驱动设计DDD(Domain-Driven Design)学习心得

DDD做为软件设计方法于2004年提出,一直不温不火,最近几年突然火起来了,为啥呢?正所谓机会给有准备的人,因为微服务的流行,大家都跃跃欲试把传统单体软件转成微服务架构,但理论很丰满,现实很骨感,光是分解微服务就让人找不到北,而DDD是歪打正着也好,富有远见也好,正好适合微服务转型设计,不火都难. 最近学习了领域驱动设计(Domain-Driven Design),感觉受益匪浅,那到底啥是DDD呢?这里分享一下学习心得.网上有很多详细的资料,感兴趣可以看看这个https://www.infoq.

奇点云数据中台技术汇(四)| DataSimba系列之流式计算

你是否有过这样的念头:如果能立刻马上看到我想要的数据,我就能更好地决策? 市场变化越来越快,企业对于数据及时性的需求,也越来越大,另一方面,当下数据容量呈几何倍暴增,数据的价值在其产生之后,也将随着时间的流逝,逐渐降低.因此,我们最好在事件发生之后,迅速对其进行有效处理,实时,快速地处理新产生的数据,帮助企业快速地进行异常管理和有效决策,而不是待数据存储在一起之后,再进行批量处理. 一:sparkStreaming+hbase整合应用,助力企业实时运营监控 对于不作更新的数据,可以通过datax

WAIC | 奇点云携「酷炫AI应用」亮相2019世界人工智能大会

你是否还在疑惑“人工智能可否改变世界?” 那么,你该有一些危机感了. 机器视觉.自然语言处理.智能语音.机器人问诊.智慧驾驶……这些AI技术及应用早已渗入了我们日常生活的点滴. 29日,以「智联世界,无限可能」为主题的2019世界人工智能大会(WAIC)在上海开幕.围绕智能领域的技术前沿.产业趋势和热点问题发表演讲和进行高端对话,打造世界顶尖的智能合作交流平台.作为全球顶级人工智能峰会,WAIC已经成为最活跃的AI产业合作平台,华为.BAT.亚马逊.特斯拉等众多行业领军企业将亮相峰会现场. 汇聚

奇点云数据中台技术汇(一)DataSimba——企业级一站式大数据智能服务平台

在这个“数据即资产”的时代,大数据技术和体量都有了前所未有的进步,若企业能有效使用数据,让数据赚钱,这必将成为企业数字化转型升级的有力武器. 奇点云自研的一站式大数据智能服务平台——DataSimba,旨在提供数据采集.数据加工.数据治理.数据规范.数据资产.数据服务等全链路的产品+技术+方法论服务,构建面向业务应用的大数据智能平台.其主要核心模块包括了数据开发套件.数据治理套件.数据服务引擎.数据智能.数据安全. 1.数据采集 数据采集作为数据中台第一个环节,不仅仅是要“采集”,也要将数据合理

奇点云数据中台技术汇(一) DataSimba——企业级一站式大数据智能服务平台

在这个"数据即资产"的时代,大数据技术和体量都有了前所未有的进步,若企业能有效使用数据,让数据赚钱,这必将成为企业数字化转型升级的有力武器. 奇点云自研的一站式大数据智能服务平台--DataSimba,旨在提供数据采集.数据加工.数据治理.数据规范.数据资产.数据服务等全链路的产品+技术+方法论服务,构建面向业务应用的大数据智能平台.其主要核心模块包括了数据开发套件.数据治理套件.数据服务引擎.数据智能.数据安全. 1.数据采集 数据采集作为数据中台第一个环节,不仅仅是要"采

奇点云数据中台技术汇(三)| DataSimba系列之计算引擎篇

随着移动互联网.云计算.物联网和大数据技术的广泛应用,现代社会已经迈入全新的大数据时代.数据的爆炸式增长以及价值的扩大化,将对企业未来的发展产生深远的影响,数据将成为企业的核心资产.如何处理大数据,挖掘大数据的价值,让大数据为企业的发展保驾护航,将是未来信息技术发展道路上关注的重点. 传统的数据处理方式通常是将数据导入至专门的数据分析工具中,这样会面临两个问题:1.如果源数据非常大时,往往数据的移动就要花费较长时间.2.传统的数据处理工具往往是单机模型,面对海量数据时,数据处理的时间也是一个很大

奇点云数据中台技术汇(六)| 智能算法助力企业效率升级

移动生产力和传统企业困境 纵观历次生产力革命,都是从生产者的技术革新开始,最后波及到消费者.几次工业革命中,能源和制造工艺的升级极大地提高了生产效率,并且创造了大量的新工种,最终提升了消费者的生活质量,促进一轮又一轮的消费升级.最近的信息技术革命,互联网最先使用在国外的大型工业产业,之后普及到社会生活中,才带来了无数次的生产力提升的机会和挑战. 然而,移动互联网生产力的产生和发展却不同,它产生于消费端而不是生产端.移动互联网生产力带来了两个核心能力: 1. 分布式,去中心化 2. 缩短信息传播路

奇点云COO刘莹应邀出席《APEC SME大数据与人工智能论坛》

10月24日-25日,由亚太经合组织(APEC).韩国中小型及初创企业管理局(the Ministry of SMEs & Startups of Korea)主办的「APEC SME 大数据与人工智能论坛」在韩国首尔举行.? 论坛以「大数据与人工智能如何驱动商业创新」为主题.来自韩国.中国.澳大利亚.俄罗斯.马来西亚等多个经济体的企业家.行业专家学者.政府领导及杰出代表齐聚一堂,分享企业的创新实践,共同展望数智化未来. 奇点云COO刘莹(花名:公主)作为嘉宾应邀出席,发表主题演讲,与参会代表们

硬核!奇点云一举斩获人工智能编程大赛一等奖、三等奖

10月30日,2019上海智慧城市建设「智慧工匠」选树暨软件开发与测试竞赛落幕,奇点云与来自云平台计算.人工智能编程等方向的学者同台竞技,共推人工智能及计算机视觉技术的交流与落地. ? 值得一提的是,奇点云算法工程师涉川.草窗以出色的专业成绩分别斩获本次人工智能赛事的一等奖.三等奖. (涉川.草窗现场领奖) 与往届相比,今年的赛事进一步聚焦云平台计算.人工智能等方向,以科技竞赛.创新方案等方式遴选出精英工程师,弘扬工匠精神. 开发者测试与人工智能编程竞赛是参赛者展示自身学术专业能力与创新技术沉淀