1370 - Bi-shoe and Phi-shoe

  PDF (English) Statistics Forum
Time Limit: 2 second(s) Memory Limit: 32 MB

Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a very popular coach for his success. He needs some bamboos for his students, so he asked his assistant Bi-Shoe to go to the market and buy them. Plenty of Bamboos of all possible integer lengths (yes!) are available in the market. According to Xzhila tradition,

Score of a bamboo = Φ (bamboo‘s length)

(Xzhilans are really fond of number theory). For your information, Φ (n) = numbers less than n which are relatively prime (having no common divisor other than 1) to n. So, score of a bamboo of length 9 is 6 as 1, 2, 4, 5, 7, 8 are relatively prime to 9.

The assistant Bi-shoe has to buy one bamboo for each student. As a twist, each pole-vault student of Phi-shoe has a lucky number. Bi-shoe wants to buy bamboos such that each of them gets a bamboo with a score greater than or equal to his/her lucky number. Bi-shoe wants to minimize the total amount of money spent for buying the bamboos. One unit of bamboo costs 1 Xukha. Help him.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n ≤ 10000) denoting the number of students of Phi-shoe. The next line contains n space separated integers denoting the lucky numbers for the students. Each lucky number will lie in the range [1, 106].

Output

For each case, print the case number and the minimum possible money spent for buying the bamboos. See the samples for details.

Sample Input

Output for Sample Input


3

5

1 2 3 4 5

6

10 11 12 13 14 15

2

1 1


Case 1: 22 Xukha

Case 2: 88 Xukha

Case 3: 4 Xukha



思路:素数打表,欧拉函数,二分。

由于要选最小的,所以假如ola[y]<ola[x](x<y)那么我们要选的是x,所以如果后面的小于前面的,我们直接把后面的更新为前面的这样欧拉函数值才会是呈递增,那没用二分选取就行了。

#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<map>
#include<set>
using namespace std;
bool prime[3300000+5];
int su[300000];
typedef long long LL;
typedef struct pp
{
        int x;
        int id;
} ss;
ss ola[3300000+5];
int aa[10005];
bool cmp(struct pp nn,struct pp mm)
{
        if(nn.x==mm.x)
                return nn.id<mm.id;
        else return nn.x<mm.x;
}
typedef unsigned long long  ll;
int main(void)
{
        int i,j,k;
        for(i=2; i<=7000; i++)
        {
                if(!prime[i])
                        for(j=i; i*j<=(3300000); j++)
                        {
                                prime[i*j]=true;
                        }
        }
        int ans=0;
        for(i=2; i<=(3300000); i++)
                if(!prime[i])
                        su[ans++]=i;
        for(i=1; i<=3300000; i++)
        {
                ola[i].id=i;
                ola[i].x=i;
        }
        for(i=0; i<ans; i++)
        {
                for(j=1; su[i]*j<=3300000; j++)
                {
                        ola[su[i]*j].x=ola[su[i]*j].x/(su[i])*(su[i]-1);
                }
        }
        for(i=2; i<3300000; i++)
        {
                if(ola[i].x>ola[i+1].x)
                {
                        ola[i+1].x=ola[i].x;
                }
        }
        scanf("%d",&k);
        int s;
        int p,q;
        for(s=1; s<=k; s++)
        {
                LL sum=0;
                scanf("%d",&p);
                for(i=0; i<p; i++)
                {
                        scanf("%d",&aa[i]);
                        int l=2;
                        int r=4*1000000;
                        int zz=0;
                        while(l<=r)
                        {
                                int mid=(l+r)>>1;
                                if(ola[mid].x<aa[i])
                                {
                                        l=mid+1;
                                }
                                else
                                {
                                        zz=mid;
                                        r=mid-1;
                                }
                        }
                        sum+=ola[zz].id;
                }
                printf("Case %d: %lld Xukha\n",s,sum);
        }
        return 0;
}
时间: 2024-09-29 20:24:20

1370 - Bi-shoe and Phi-shoe的相关文章

NodeJS学习第一季-路由规则

1.req.query 处理GET请求 ,获取GET参数 //GET /search?q=tobi+ferret req.query.q //=>"tobi ferret" //GET /shoes?order=desc&shoe[color]=blue&shoe[type]=converse req.query.order //=>"desc" req.query.shoe.color //=>"blue" 2

express 中文文档

express() 创建一个express应用程序 var express = require('express'); var app = express(); app.get('/', function(req, res){ res.send('hello world'); }); app.listen(3000); Application app.set(name, value) 将设置项 name 的值设为 value app.set('title', 'My Site'); app.ge

现代软件工程 练习与讨论 第十章 典型用户和场景

1. 讨论:下面的老板犯了什么错误? 老板没有看到学生们背后的真正动机,大学生们都是打着出来学习的幌子来到旅店开房,老板把学生的幌子理解成了他们的需求,于是对宾馆进行了整改,撤掉了学生们真正想要的床,这样一来就没有理解学生客户背后的真正动机,所以旅店也只能倒闭. 2. 是否要文档 文档对于软件的开发过程来说是十分有用的,而且文档经常被作为里程碑标记,使项目跟踪和控制变得可能,也使软件生产的每一部分都可前溯,保证软件的质量.在软件开发的过程中,文档的作用不可小视.它们不仅能帮助开发人员了解自己的工

运算符、表达式、语句

//计算多个鞋尺码对应的英寸的长度#include<stdio.h>#define ADJUST 7.64#define SCALE 0.352int main(void ){ double shoe,foot; printf("Shoe size(men's) foot length\n"); shoe = 3.0; while(shoe < 18.5) { foot = SCALE*shoe + ADJUST; printf("%10.1f %15.2f

nodejs的url参数获取

express封装了多种http请求方式,我们主要使用get和post两种,即qpp.get和qpp.post.qpp.get和qpp.post的第一个参数都为请求的路径,第二个参数为处理请求的回调函数,回调函数有两个参数,分别是req和res,代表请求信息和响应信息.路径请求及对应的获取路径有以下几种形式: req.query //GET /search?q=tobi+ferret        req.query.q;//"tobi ferret"       //GET /sho

C# Heap(ing) Vs Stack(ing) in .NET [C# 堆和栈的使用以及垃圾回收原理]

最近在<C#Corner>上看到了一篇关于.NET内存管理以及垃圾回收的文章,虽说是英文的内容,但还是硬着头皮读了下来.发现并不是我原本想象中的那么枯燥,因为语言通俗而且还有很多图片示意,感觉让我又对"堆"和"栈"以及垃圾回收机制有了更加深刻的理解和认知,记录下来提醒自己尽量书写优质的代码,而不是只管实现功能,不管性能优劣去蛮干.  [文章出自: http://www.c-sharpcorner.com/article/c-sharp-heaping-v

sql开发技巧总结-2

---恢复内容开始--- 1.如何进行行列转换 需求: 列转换成行 select a.`user_name`,sum(b.kills) from user1 a join user_kills b on a.id = b.user_id group by a.user_name; -行转换成列 select sum(case when user_name='wukong' then kills end) as 'wukong', sum(case when user_name='zhubajie

Express 4.x API

express() express()用来创建一个Express的程序.express()方法是express模块导出的顶层方法. var express = require('express'); var app = express(); Methods express.static(root, [options]) express.static是Express中唯一的内建中间件.它以server-static模块为基础开发,负责托管 Express 应用内的静态资源. 参数root为静态资源

express解析http请求

get 和 post 的第一个参数都为请求的路径,第二个参数为处理请求的回调函数,回调函数有两个参数分别是 req 和 res,代表请求信息和响应信息 .路径请求及对应的获取路径有以下几种形式: req.query // GET /search?q=tobi+ferret req.query.q // => "tobi ferret" // GET /shoes?order=desc&shoe[color]=blue&shoe[type]=converse req

.NET的堆和栈03,引用类型对象拷贝以及内存分配

在" .NET的堆和栈01,基本概念.值类型内存分配"中,了解了"堆"和"栈"的基本概念,以及值类型的内存分配.我们知道:当执行一个方法的时候,值类型实例会在"栈"上分配内存,而引用类型实例会在"堆"上分配内存,当方法执行完毕,"栈"上的实例由操作系统自动释放,"堆"上的实例由.NET Framework的GC进行回收. 在" .NET的堆和栈02,值类型和