日志收集+分析+报警 logstash

YUM 安装logstash

下载安装公钥:

rpm --import https://artifacts.elastic.co/GPG-KEY-elasticsearch

创建logstash.repo: vim /etc/yum.repos.d/logstatsh.repo

[logstash-5.x]
name=Elastic repository for 5.x packages
baseurl=https://artifacts.elastic.co/packages/5.x/yum
gpgcheck=1
gpgkey=https://artifacts.elastic.co/GPG-KEY-elasticsearch
enabled=1
autorefresh=1
type=rpm-md

使用yum安装logstash

sudo yum install logstash

配置 vim /etc/logstash/conf.d/logstash-syslog.conf


重启 logstash 应用变更 service logstash restart

打开浏览器访问 127.0.0.1:5601

时间: 2024-10-13 22:32:48

日志收集+分析+报警 logstash的相关文章

日志收集分析工具logstash + elasticsearch

Your logs are your data: logstash + elasticsearch by Andrey Redko on February 25th, 2013 | Filed in: Enterprise Java Tags: Elasticsearch, Logging, Logstash Topic of today's post stays a bit aside from day-to-day coding and development but nonetheless

logstash日志收集分析系统elasticsearch&kibana

logstash日志收集分析系统Logstash provides a powerful pipeline for storing, querying, and analyzing your logs. When using Elasticsearch as a backend data store and Kibana as a frontend reporting tool, Logstash acts as the workhorse. It includes an arsenal of

结合Docker快速搭建ELK日志收集分析平台

结合Docker快速搭建ELK日志收集分析平台 2017-03-27 09:39 阅读 172 评论 0 作者:马哥Linux运维-Eason ELK Stack ELK (Elasticsearch + Logstash + Kibana),是一个开源的日志收集平台,用于收集各种客户端日志文件在同一个平台上面做数据分析. Introduction Elasticsearch, 基于json分析搜索引擎Logstash, 动态数据收集管道Kibana, 可视化视图将elasticsearh所收集

elkb+redis建立日志收集分析系统

一.ELKB说明 elastic提供了一套非常高级的工具ELKB来满足以上这几个需求.ELKB指的是用于日志分析或者说数据分析的四个软件,各自拥有独立的功能又可以组合在一起.先来简单介绍一下这四个软件. Elastic Search: 从名称可以看出,Elastic Search 是用来进行搜索的,提供数据以及相应的配置信息(什么字段是什么数据类型,哪些字段可以检索等),然后你就可以自由地使用API搜索你的数据. Logstash:.日志文件基本上都是每行一条,每一条里面有各种信息,这个软件的功

ELK:日志收集分析平台

目录 简介 环境说明 Filebeat 部署 web上采集配置文件 app上采集配置文件 Redis 部署 配置文件 Logstash 部署 Elasticsearch 集群部署 配置文件 Kibana 部署 参考文档 简介 ELK是一个日志收集分析的平台,它能收集海量的日志,并将其根据字段切割.一来方便供开发查看日志,定位问题:二来可以根据日志进行统计分析,通过其强大的呈现能力,挖掘数据的潜在价值,分析重要指标的趋势和分布等,能够规避灾难和指导决策等.ELK是Elasticsearch公司出品

日志收集分析系统架构

日志收集分析系统架构   一.部署架构 日志收集系统一般包括如图所示三层.Web服务器层,日志收集层,日志存储层.Web服务器层是日志的来源,一般部署web应用供用户访问,产生日志,该节点上一般需要部署日志收集程序的agent.日志收集层手机web服务器产生的日志传输给日志存储层,存储层一般使用分布式文件系统HDFS,日志可以存储在hdfs上或者hbase上. 以scribe作为日志收集系统架构,scribe分为scribe agent和scribe server 以kafka作为日志收集系统架

syslog-ng日志收集分析服务搭建及配置

syslog-ng日志收集分析服务搭建及配置:1.网上下载eventlog_0.2.12.tar.gz.libol-0.3.18.tar.gz.syslog-ng_3.3.5.tar.gz三个软件: 2.解压及安装服务端: [[email protected] tools]# tar xf eventlog_0.2.12.tar.gz [[email protected] tools]# cd eventlog-0.2.12/ [[email protected] eventlog-0.2.12

ELK日志收集分析系统配置

ELK是日志收益与分析的利器. 1.elasticsearch集群搭建 略 2.logstash日志收集 我这里的实现分如下2步,中间用redis队列做缓冲,可以有效的避免es压力过大: 1.n个agent对n个服务的log做日志收集(1对1的方式),从日志文件解析数据,存入broker,这里用的是redis的发布订阅模式的消息队列,当然你可以选用kafka,redis比较方便: 3.indexer做日志汇总,从redis队列中拿数据入es: 下面给出agent和index的配置示例: 1.dr

基于Elasticsearch+Fluentd+Kibana的日志收集分析系统

我们平时分析log直接在日志文件中 grep.awk 就可以获得自己想要的信息,此方法效率低下,生产中需要集中化的日志管理,所有服务器上的日志收集汇总 Elasticsearch一个节点(node)就是一个Elasticsearch实例,一个集群(cluster)由一个或多个节点组成,它们具有相同的cluster.name,它们协同工作,分享数据和负载.当加入新的节点或者删除一个节点时,集群就会感知到并平衡数据.集群中一个节点会被选举为主节点(master),它将临时管理集群级别的一些变更,例如