poj 2063 Investmen 完全背包

这个题的想法不难,两个点:

1 是完全背包

2 是考虑/1000,降低复杂度

但是提交的时候反复的wa,最后找问题原来是dp开小了,可是dp本来开1005,后来开到100030过了。哎,如果没有时间计算

dp的长度的话,就往大了开,血的教训。

Investment

Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 10087   Accepted: 3539

Description

John never knew he had a grand-uncle, until he received the notary‘s letter. He learned that his late grand-uncle had gathered a lot of money, somewhere in South-America, and that John was the only inheritor. 
John did not need that much money for the moment. But he realized that it would be a good idea to store this capital in a safe place, and have it grow until he decided to retire. The bank convinced him that a certain kind of bond was interesting for him. 
This kind of bond has a fixed value, and gives a fixed amount of yearly interest, payed to the owner at the end of each year. The bond has no fixed term. Bonds are available in different sizes. The larger ones usually give a better interest. Soon John realized that the optimal set of bonds to buy was not trivial to figure out. Moreover, after a few years his capital would have grown, and the schedule had to be re-evaluated. 
Assume the following bonds are available:

Value Annual
interest
4000
3000
400
250

With a capital of e10 000 one could buy two bonds of $4 000, giving a yearly interest of $800. Buying two bonds of $3 000, and one of $4 000 is a better idea, as it gives a yearly interest of $900. After two years the capital has grown to $11 800, and it makes sense to sell a $3 000 one and buy a $4 000 one, so the annual interest grows to $1 050. This is where this story grows unlikely: the bank does not charge for buying and selling bonds. Next year the total sum is $12 850, which allows for three times $4 000, giving a yearly interest of $1 200. 
Here is your problem: given an amount to begin with, a number of years, and a set of bonds with their values and interests, find out how big the amount may grow in the given period, using the best schedule for buying and selling bonds.

Input

The first line contains a single positive integer N which is the number of test cases. The test cases follow. 
The first line of a test case contains two positive integers: the amount to start with (at most $1 000 000), and the number of years the capital may grow (at most 40). 
The following line contains a single number: the number d (1 <= d <= 10) of available bonds. 
The next d lines each contain the description of a bond. The description of a bond consists of two positive integers: the value of the bond, and the yearly interest for that bond. The value of a bond is always a multiple of $1 000. The interest of a bond is never more than 10% of its value.

Output

For each test case, output – on a separate line – the capital at the end of the period, after an optimal schedule of buying and selling.

Sample Input

1
10000 4
2
4000 400
3000 250

Sample Output

14050

Source

Northwestern Europe 2004

#include<iostream>
#include<stdio.h>
#include<cstring>
using namespace std;
const int maxx = 105;
//long long dp[maxx][maxx];
int  dp[100030];
int  bag;
int  w[maxx],v[maxx];
int kind;
int year;
int  get()
{
    memset(dp,0,sizeof(dp));
   /* for(int i=1;i<=kind;i++)
    {
        for(int j=0;j<=bag;j++)
        {
            for(int k=0;k*w[i]<=j;k++)
            {
                dp[i][j]=max(dp[i][j],dp[i-1][j-w[i]*k]+v[i]*k);
            }

        }
    }
    bag=dp[kind][bag];
    return bag;*/
    for(int i=1;i<=kind;i++)
    {
        for(int j=w[i];j<=bag;j++)
            {
                dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
            }
    }
    return dp[bag];
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        int ans=0;
        scanf("%d%d",&bag,&year);
        scanf("%d",&kind);
        ans=bag;
        bag/=1000;
        for(int i=1;i<=kind;i++)
        {
            scanf("%d%d",&w[i],&v[i]);
            w[i]/=1000;
        }
        for(int k=0;k<year;k++)
        {
            ans+=get();
            bag=(ans/1000);

        }
        printf("%d\n",ans);
    }
    return 0;
}

时间: 2024-10-20 06:42:57

poj 2063 Investmen 完全背包的相关文章

poj 2063 基础完全背包

这是一题基础的完全背包,适合初学者来理解完全背包 题意:有 n 种债券可以买 ,  每种债券的价格为 w , 每一年的收益为 p , 给你 wi 块钱 , 和 years 年的时间 , 我们最大的收益是是多少? 因为 , 每种债券可以买任意多个 , 所以这是一个简单的完全背包,但是由于基数(体积)太大 , 所以需要优化一下 : 由题意我们知道 , 每种债券的价格都是 1000 的倍数 , 那么我们就让每种债券的价格都 除以 1000 , 并且把 p 也除以 1000 , 这样就MTE , 也不会

POJ 2063 Investment 完全背包

题目链接:http://poj.org/problem?id=2063 今天果然是卡题的一天.白天被hdu那道01背包的变形卡到现在还没想通就不说了,然后晚上又被这道有个不大也不小的坑的完全背包卡了好久.这题主要是说让你选择不同的债券(每种债券的费用和年利率的属性),然后n年后使得本金最大,如果仅仅是问一年的话就是个裸完全背包的题了,不过它是n年,每年得到的总利息都会加入到本金中变为下一年的本金,知道了这个后就很好处理了,在这道题里每年变化的本金就是背包容量,然后债券那两个属性就是物品的费用(o

POJ 2063 Investment

POJ 2063 Investment 完全背包 fakeDescription: 吃土魔法少女经济不景气辣! 变出借来了为1000的倍数的钱打算去投资股票辣! (顺便吃土少女说她最多只能借来1000000元)告诉你吃土少女将会吃土投资几年以及每种股票的年收益和每一股的价格 现在吃土少女任命你为投资顾问制定每年的投资方案最大化收益.吃土少女不关心你怎么买的.只需要你写个程序告诉她她最后持有多少财富.吃土少女等着你来拯救! 以上题目描述都是我口胡的.233.不过意思对了就行了233 由于每年有一次

POJ 2063 Investment (完全背包)

A - Investment Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u Submit Status Practice POJ 2063 Description John never knew he had a grand-uncle, until he received the notary's letter. He learned that his late grand-uncle

POJ 2392 Space Elevator 背包题解

多重背包,本题不需要二分优化.相对简单点.因为重复数十分小,小于10: 而增加一个限制每种材料的高度做法,如果使用逆向填表,那么只需要从这个高度往小递归填表就可以了. 还有就是注意要排序,以限制高度为标准从小到大排序,否则答案错误的. #include <stdio.h> #include <string.h> #include <algorithm> using std::sort; const int MAX_K = 401; const int MAX_H = 4

POJ 3211 Washing Clothes 背包题解

本题是背包问题,但是需要转化成背包的. 因为是两个人洗衣服,那么就是说一个人只需要洗一半就可以了,因为不能两个人同时洗一件衣服,所以就成了01背包问题了. 思路: 1 计算洗完同一颜色的衣服需要的总时间totTime 2 利用动态规划背包法求这些衣服能在那些时间点完成 3 求比(totTime+1)/2大的最小时间点 4 得到洗一种颜色衣服的时间,那么继续求下洗一种颜色衣服的时间 5 最后加起来就是答案了. 这个是算法问题. 剩下来就是考编程功力了,因为给出的数据,需要我们自己把衣服分类,分类之

POJ 1742 Coins (多重背包)

Coins Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 28448   Accepted: 9645 Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar.One day Tony opened his money-box and found there were some

POJ 3624 Charm Bracelet 背包题解

最简单的背包问题了,本题应该除了背包就一个考点了:不能开二维数组.我没开过二维,不过看数据是不可以的.太大了. 做法有两种改进省内存DP: 1 所谓的滚动数组 2 逆向填表 很久没做背包DP,突然觉得这种背包问题很简单了. 下面给出两种解法: 1 calBag()是滚动数组 2 calBag2()是逆向填表 #pragma once #include <stdio.h> #include <stdlib.h> #include <vector> using namesp

POJ 1276 Cash Machine 背包题解

典型的多重背包的应用题解. 可以使用二进制优化,也可以使用记录当前物品的方法解,速度更加快. const int MAX_CASH = 100001; const int MAX_N = 11; int tbl[MAX_CASH], nums[MAX_N], bills[MAX_N], cash, n; int bag() { if (cash <= 0 || n <= 0) return 0; memset(tbl, 0, sizeof(int) * (cash+1)); for (int