感觉这题不是很难,但是很恶心。
说一下几点。
1.预处理出来每两个点所构成的抛物线能消除的猪的集合。
2.如果两个点横坐标相同,则不能构成抛物线
3.a >= 0 continue
4.卡精度
5.卡常数(本蒟蒻巨菜,2nn2做法)
#include <cstdio> #include <cstring> #define N 19 #define abs(x) ((x) < 0 ? -(x) : (x)) #define min(x, y) ((x) < (y) ? (x) : (y)) int T, n, m, S; int f[1 << N], s[N][N]; double X[N], Y[N], a, b; inline bool pd(double x, double y) { return abs(x - y) < (1e-6); } int main() { int i, j, k, l; scanf("%d", &T); while(T--) { scanf("%d %d", &n, &m); memset(f, 127 / 3, sizeof(f)); for(i = 1; i <= n; i++) scanf("%lf %lf", &X[i], &Y[i]); memset(s, 0, sizeof(s)); for(i = 1; i <= n; i++) for(j = i + 1; j <= n; j++) { if(pd(X[i], X[j])) continue; a = (Y[j] / X[j] - Y[i] / X[i]) / (X[j] - X[i]); b = Y[i] / X[i] - a * X[i]; if(a >= 0) continue; s[i][j] |= (1 << i - 1) | (1 << j - 1); for(k = 1; k <= n; k++) if(k != i && k != j && pd(Y[k], a * X[k] * X[k] + b * X[k])) s[i][j] |= 1 << k - 1; } f[0] = 0; for(i = 0; i < (1 << n); i++) for(j = 1; j <= n; j++) if(!(i & (1 << j - 1))) { f[i | (1 << j - 1)] = min(f[i | (1 << j - 1)], f[i] + 1); for(k = j + 1; k <= n; k++) if((i & (1 << k - 1)) && s[j][k]) { S = i ^ (i & s[j][k]); f[i | (1 << j - 1)] = min(f[i | (1 << j - 1)], f[S] + 1); } } printf("%d\n", f[(1 << n) - 1]); } return 0; }
时间: 2024-10-19 11:50:32