Range Sum Query 2D - Immutable

Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).


The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.

Example:

Given matrix = [
  [3, 0, 1, 4, 2],
  [5, 6, 3, 2, 1],
  [1, 2, 0, 1, 5],
  [4, 1, 0, 1, 7],
  [1, 0, 3, 0, 5]
]

sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12

Note:

   1.You may assume that the matrix does not change.   2.There are many calls to sumRegion function.   3.You may assume that row1 ≤ row2 and col1 ≤ col2.

个人总结:思路和Range Sum Query一样,只是需要把二位数组按行去求和;
ac代码;public class NumMatrix {
    int rows,cols;
     int[][] sum_row;
   public NumMatrix(int[][] matrix){
       if(matrix.length==0 || matrix==null) return;
        sum_row = matrix;
        rows=matrix.length;
        cols=matrix[0].length;

       for(int i=0;i<rows;i++){
           for(int j=1;j<cols;j++){
               sum_row[i][j] =sum_row[i][j-1]+matrix[i][j];
           }
       }
   }

   public int sumRegion(int row1,int col1,int row2,int col2){

       if(row2+1>rows || col2+1>cols) return 0;
       int sum=0;

       if(col1>=1){
           for(int i=row1;i<=row2;i++){
               sum += sum_row[i][col2]-sum_row[i][col1-1];
           }
       }
       else {
           for(int i=row1;i<=row2;i++){
               sum += sum_row[i][col2];
           }
       }

       return sum;
      }
   }
 


时间: 2024-10-16 14:06:11

Range Sum Query 2D - Immutable的相关文章

[LeetCode] Range Sum Query - Immutable &amp; Range Sum Query 2D - Immutable

Range Sum Query - Immutable Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive. Example: Given nums = [-2, 0, 3, -5, 2, -1] sumRange(0, 2) -> 1 sumRange(2, 5) -> -1 sumRange(0, 5) -> -3 Note: You

304. Range Sum Query 2D - Immutable

/* * 304. Range Sum Query 2D - Immutable * 2016-7-3 by Mingyang * 这个题目自己做了一下同样的dp思路,但是out of boundry,为什么呢? * 因为自己老老实实的把dp的维度跟matrix的维度设成一样的了 * 那我们就把dp的维度再多设一个这样就很好地表示了 * dp[i][j]仅仅表示到i-1,j-1这个点(inclusive)的和的大小 */ class NumMatrix { private int[][] df;

[LeetCode] Range Sum Query 2D - Immutable

Very similar to Range Sum Query - Immutable, but we now need to compute a 2d accunulated-sum. In fact, if you work in computer vision, you may know a name for such an array --- Integral Image. To solve this problem, Stefan has already posted a very e

304. Range Sum Query 2D - Immutable java solutions

Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2). The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, co

leetcode笔记:Range Sum Query 2D - Immutable

一. 题目描述 Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2). The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (

LeetCode OJ:Range Sum Query 2D - Immutable(区域和2D版本)

Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2). Example: Given matrix = [ [3, 0, 1, 4, 2], [5, 6, 3, 2, 1], [1, 2, 0, 1, 5], [4, 1, 0, 1, 7

[leetcode] 303. Range Sum Query &amp;&amp; 304. Range Sum Query 2D - Immutable

Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive. Example: Given nums = [-2, 0, 3, -5, 2, -1] sumRange(0, 2) -> 1 sumRange(2, 5) -> -1 sumRange(0, 5) -> -3 Note: You may assume that the array do

【Leetcode】Range Sum Query 2D - Immutable

题目链接:https://leetcode.com/problems/range-sum-query-2d-immutable/ 题目: Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2). The above rectangle (w

leetcode 304. Range Sum Query 2D - Immutable(递推)

Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2). The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, co