MySQL内存----使用说明全局缓存+线程缓存) 转

MySQL内存使用说明(全局缓存+线程缓存)

首先我们来看一个公式,MySQL中内存分为全局内存和线程内存两大部分(其实并不全部,只是影响比较大的 部分):

per_thread_buffers=(read_buffer_size+read_rnd_buffer_size+sort_buffer_size+thread_stack+join_buffer_size+binlog_cache_size
+tmp_table_size)*max_connections

global_buffers=

innodb_buffer_pool_size+innodb_additional_mem_pool_size+innodb_log_buffer_size+key_buffer_size+query_cache_size

total_memory=global_buffers+per_thread_buffers

全局缓存:

key_buffer_size:决定索引处理的速度,尤其是索引读的速度。默认值是16M,通过检查状态值Key_read_requests和Key_reads,可以知道key_buffer_size设置是否合理。比例key_reads / key_read_requests应该尽可能的低,至少是1:100,1:1000更好(上述状态值可以使用‘key_read%‘获得用来显示状态数据)。key_buffer_size只对MyISAM表起作用。即使你不使用MyISAM表,但是内部的临时磁盘表是MyISAM表,也要使用该值。可以使用检查状态值‘created_tmp_disk_tables‘得知详情。

innodb_buffer_pool_size:InnoDB使用该参数指定大小的内存来缓冲数据和索引,这个是Innodb引擎中影响性能最大的参数。

innodb_additional_mem_pool_size:指定InnoDB用来存储数据字典和其他内部数据结构的内存池大小。缺省值是8M。通常不用太大,只要够用就行,应该与表结构的复杂度有关系。如果不够用,MySQL会在错误日志中写入一条警告信息。

innodb_log_buffer_size:指定InnoDB用来存储日志数据的缓存大小,如果您的表操作中包含大量并发事务(或大规模事务),并且在事务提交前要求记录日志文件,请尽量调高此项值,以提高日志效率。

query_cache_size:是MySQL的查询缓冲大小。(从4.0.1开始,MySQL提供了查询缓冲机制)使用查询缓冲,MySQL将SELECT语句和查询结果存放在缓冲区中,今后对于同样的SELECT语句(区分大小写),将直接从缓冲区中读取结果。根据MySQL用户手册,使用查询缓冲最多可以达到238%的效率。通过检查状态值’Qcache_%’,可以知道query_cache_size设置是否合理:如果Qcache_lowmem_prunes的值非常大,则表明经常出现缓冲不够的情况,如果Qcache_hits的值也非常大,则表明查询缓冲使用非常频繁,此时需要增加缓冲大小;如果Qcache_hits的值不大,则表明你的查询重复率很低,这种情况下使用查询缓冲反而会影响效率,那么可以考虑不用查询缓冲。此外,在SELECT语句中加入SQL_NO_CACHE可以明确表示不使用查询缓冲。

线程缓存

每个连接到MySQL服务器的线程都需要有自己的缓冲。大概需要立刻分配256K,甚至在线程空闲时,它们使用默认的线程堆栈,网络缓存等。事务开始之后,则需要增加更多的空间。运行较小的查询可能仅给指定的线程增加少量的内存消耗,然而如果对数据表做复杂的操作例如扫描、排序或者需要临时表,则需分配大约read_buffer_size,sort_buffer_size,read_rnd_buffer_size,tmp_table_size大小的内存空间。不过它们只是在需要的时候才分配,并且在那些操作做完之后就释放了。有的是立刻分配成单独的组块。tmp_table_size 可能高达MySQL所能分配给这个操作的最大内存空间了。

read_buffer_size:是MySQL读入缓冲区大小。对表进行顺序扫描的请求将分配一个读入缓冲区,MySQL会为它分配一段内存缓冲区。read_buffer_size变量控制这一缓冲区的大小。如果对表的顺序扫描请求非常频繁,并且你认为频繁扫描进行得太慢,可以通过增加该变量值以及内存缓冲区大小提高其性能。

sort_buffer_size:是MySQL执行排序使用的缓冲大小。如果想要增加ORDER BY的速度,首先看是否可以让MySQL使用索引而不是额外的排序阶段。如果不能,可以尝试增加sort_buffer_size变量的大小。

read_rnd_buffer_size:是MySQL的随机读缓冲区大小。当按任意顺序读取行时(例如,按照排序顺序),将分配一个随机读缓存区。进行排序查询时,MySQL会首先扫描一遍该缓冲,以避免磁盘搜索,提高查询速度,如果需要排序大量数据,可适当调高该值。但MySQL会为每个客户连接发放该缓冲空间,所以应尽量适当设置该值,以避免内存开销过大。

tmp_table_size:是MySQL的临时表缓冲大小。所有联合在一个DML指令内完成,并且大多数联合甚至可以不用临时表即可以完成。大多数临时表是基于内存的(HEAP)表。具有大的记录长度的临时表 (所有列的长度的和)或包含BLOB列的表存储在硬盘上。如果某个内部heap(堆积)表大小超过tmp_table_size,MySQL可以根据需要自动将内存中的heap表改为基于硬盘的MyISAM表。还可以通过设置tmp_table_size选项来增加临时表的大小。也就是说,如果调高该值,MySQL同时将增加heap表的大小,可达到提高联接查询速度的效果。

thread_stack :主要用来存放每一个线程自身的标识信息,如线程id,线程运行时基本信息等等,我们可以通过 thread_stack 参数来设置为每一个线程栈分配多大的内存。

join_buffer_size:应用程序经常会出现一些两表(或多表)Join的操作需求,MySQL在完成某些 Join 需求的时候(all/index join),为了减少参与Join的“被驱动表”的读取次数以提高性能,需要使用到 Join Buffer 来协助完成 Join操作。当 Join Buffer 太小,MySQL 不会将该 Buffer 存入磁盘文件,而是先将Join Buffer中的结果集与需要 Join 的表进行 Join 操作,然后清空 Join Buffer 中的数据,继续将剩余的结果集写入此 Buffer 中,如此往复。这势必会造成被驱动表需要被多次读取,成倍增加 IO 访问,降低效率。

binlog_cache_size:在事务过程中容纳二进制日志SQL 语句的缓存大小。二进制日志缓存是服务器支持事务存储引擎并且服务器启用了二进制日志(—log-bin 选项)的前提下为每个客户端分配的内存,注意,是每个Client 都可以分配设置大小的binlog cache 空间。如果系统中经常会出现多语句事务的话,可以尝试增加该值的大小,以获得更好的性能。当然,我们可以通过MySQL 的以下两个状态变量来判断当前的binlog_cache_size 的状况:Binlog_cache_use 和Binlog_cache_disk_use。“max_binlog_cache_size”:和"binlog_cache_size"相对应,但是所代表的是binlog 能够使用的最大cache 内存大小。当我们执行多语句事务的时候,max_binlog_cache_size 如果不够大的话,系统可能会报出“ Multi-statement transaction required more than ‘max_binlog_cache_size‘ bytes ofstorage”的错误。

其中需要注意的是:table_cache表示的是所有线程打开的表的数目,和内存无关。

时间: 2024-09-30 04:33:49

MySQL内存----使用说明全局缓存+线程缓存) 转的相关文章

MySQL内存使用-全局共享

前言 全局共享内则主要是 MySQL Instance(mysqld进程)以及底层存储引擎用来暂存各种全局运算及可共享的暂存信息,如存储查询缓存的 Query Cache,缓存连接线程的 Thread Cache,缓存表文件句柄信息的 Table Cache,缓存二进制日志的 BinLog Buffer, 缓存 MyISAM 存储引擎索引键的 Key Buffer以及存储 InnoDB 数据和索引的 InnoDB Buffer Pool 等等.下面针对 MySQL 主要的共享内存进行一个简单的分

MySQL中内存分为全局内存和线程内存

首先我们来看一个公式,MySQL中内存分为全局内存和线程内存两大部分(其实并不全部,只是影响比较大的 部分): 复制代码 代码如下: per_thread_buffers=(read_buffer_size+read_rnd_buffer_size+sort_buffer_size+thread_stack+join_buffer_size+binlog_cache_size+tmp_table_size)*max_connectionsglobal_buffers=innodb_buffer_

mysql线程缓存thread_cache_size参数优化

thread_cahe_size线程池,线程缓存.用来缓存空闲的线程,以至于不被销毁,如果线程缓存中的空闲线程,需要重新建立新连接,则会优先调用线程池中的缓存,很快就能响应连接请求. 每建立一个连接,都需要一个线程与之匹配 MariaDB [(none)]> show global status like '%thread%'; +------------------------------------------+----------+ | Variable_name            

MySQL内存使用-线程独享

前言 在 MySQL 中,线程独享内存主要用于各客户端连接线程存储各种操作的独享数据,如线程栈信息,分组排序操作,数据读写缓冲,结果集暂存等等,而且大多数可以通过相关参数来控制内存的使用量. 线程栈信息使用内存(thread_stack) 主要用来存放每一个线程自身的标识信息,如线程id,线程运行时基本信息等等,我们可以通过 thread_stack 参数来设置为每一个线程栈分配多大的内存. 排序使用内存(sort_buffer_size) MySQL 用此内存区域进行排序操作(filesort

合理配置MySQL缓存 提高缓存命中率

众所周知,系统读取数据时,从内存中读取要比从硬盘上速度要快好几百倍.故现在绝大部分应用系统,都会最大程度的使用缓存(内存中的一个存储区域),来提高系统的运行效率.MySQL数据库也不例外.在这里,笔者将结合自己的工作经验,跟大家探讨一下,MySQL数据库中缓存的管理技巧:如何合理配置MySQL数据库缓存,提高缓存命中率. 一.什么时候应用系统会从缓存中获取数据? 数据库从服务器上读取数据时,可以从硬盘的数据文件中获取数据,也可以从数据库缓存中读取数据.现在数据库管理员需要搞清楚的是,在什么样的情

mysql基础(五)查询缓存

缓存的有缺点     1.如果命中缓存,直接从缓存中返回,减少分析和执行SQL语句的过程,提高查询效率     2.缓存会带来额外的开销,如果开启缓存的代价大于不开启缓存的代价则不建议开启缓存      缓存的开销     1.读查询在开始之前会先检查查询缓存     2.若某个读查询可以被缓存且未被缓存,那么当完成执行后,MySQL会将其结果存入查询缓存     3.对写操作也有影响,因为当写入数据时,MySQL必须将对应表的所有缓存都设置失效,     这在缓存内存较大时将导致很大的系统消耗

MySQL详解(21)------------缓存参数优化

数据库属于 IO 密集型的应用程序,其主要职责就是数据的管理及存储工作.而我们知道,从内存中读取一个数据库的时间是微秒级别,而从一块普通硬盘上读取一个IO是在毫秒级别,二者相差3个数量级.所以,要优化数据库,首先第一步需要优化的就是 IO,尽可能将磁盘IO转化为内存IO.本文先从 MySQL 数据库IO相关参数(缓存参数)的角度来看看可以通过哪些参数进行IO优化: query_cache_size/query_cache_type (global) Query cache 作用于整个 MySQL

内存模型是怎么解决缓存一致性的?

前言 在再有人问你Java内存模型是什么,就把这篇文章发给他.这篇文章中,我们介绍过关于Java内容模型的来龙去脉. 我们在文章中提到过,由于CPU和主存的处理速度上存在一定差别,为了匹配这种差距,提升计算机能力,人们在CPU和主存之间增加了多层高速缓存.每个CPU会有L1.L2甚至L3缓存,在多核计算机中会有多个CPU,那么就会存在多套缓存,那么这多套缓存之间的数据就可能出现不一致的现象.为了解决这个问题,有了内存模型.内存模型定义了共享内存系统中多线程程序读写操作行为的规范.通过这些规则来规

Volley随笔之网络线程和缓存线程

一.网络线程 NetworkDispatcher Volley框架中提供NetworkDispatcher类作为工作线程(work thread)处理网络请求,它继承了Thread.NetworkDispatcher在其run()方法中调用了 Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND); 将网络请求线程的优先级设置成后台线程,后台线程是一个比一般线程优先级低的线程,不过能够最小限度的影响用户界面响应.工作线程先从请求