如何让你的SQL运行得更快

人们在使用SQL时往往会陷入一个误区,即太关注于所得的结果是否正确,而忽略了不同的实现方法之间可能存在的性能差异,这种性能差异在大型的或是复杂的数据库环境中(如联机事务处理OLTP或决策支持系统DSS)中表现得尤为明显。

笔者在工作实践中发现,不良的SQL往往来自于不恰当的索引设计、不充份的连接条件和不可优化的where子句。

在对它们进行适当的优化后,其运行速度有了明显地提高!

下面我将从这三个方面分别进行总结:

为了更直观地说明问题,所有实例中的SQL运行时间均经过测试,不超过1秒的均表示为(< 1秒)。----

测试环境: 主机:HP LH II---- 主频:330MHZ---- 内存:128兆----

操作系统:Operserver5.0.4----

数据库:Sybase11.0.3

一、不合理的索引设计----

例:表record有620000行,试看在不同的索引下,下面几个 SQL的运行情况:

---- 1.在date上建有一非个群集索引

select count(*) from record where date >‘19991201‘ and date < ‘19991214‘and amount >2000 (25秒)

select date ,sum(amount) from record group by date(55秒)

select count(*) from record where date >‘19990901‘ and place in (‘BJ‘,‘SH‘) (27秒)

---- 分析:----

date上有大量的重复值,在非群集索引下,数据在物理上随机存放在数据页上,在范围查找时,必须执行一次表扫描才能找到这一范围内的全部行。

---- 2.在date上的一个群集索引

select count(*) from record where date >‘19991201‘ and date < ‘19991214‘ and amount >2000 (14秒)

select date,sum(amount) from record group by date(28秒)

select count(*) from record where date >‘19990901‘ and place in (‘BJ‘,‘SH‘)(14秒)

---- 分析:---- 在群集索引下,数据在物理上按顺序在数据页上,重复值也排列在一起,因而在范围查找时,可以先找到这个范围的起末点,且只在这个范围内扫描数据页,避免了大范围扫描,提高了查询速度。

---- 3.在place,date,amount上的组合索引

select count(*) from record where date >‘19991201‘ and date < ‘19991214‘ and amount >2000 (26秒)

select date,sum(amount) from record group by date(27秒)

select count(*) from record where date >‘19990901‘ and place in (‘BJ, ‘SH‘)(< 1秒)

---- 分析:---- 这是一个不很合理的组合索引,因为它的前导列是place,第一和第二条SQL没有引用place,因此也没有利用上索引;第三个SQL使用了place,且引用的所有列都包含在组合索引中,形成了索引覆盖,所以它的速度是非常快的。

---- 4.在date,place,amount上的组合索引

select count(*) from record where date >‘19991201‘ and date < ‘19991214‘ and amount >2000(< 1秒)

select date,sum(amount) from record group by date(11秒)

select count(*) from record where date >‘19990901‘ and place in (‘BJ‘,‘SH‘)(< 1秒)

---- 分析:---- 这是一个合理的组合索引。它将date作为前导列,使每个SQL都可以利用索引,并且在第一和第三个SQL中形成了索引覆盖,因而性能达到了最优。

---- 5.总结:----

缺省情况下建立的索引是非群集索引,但有时它并不是最佳的;合理的索引设计要建立在对各种查询的分析和预测上。

一般来说:

①.有大量重复值、且经常有范围查询(between, >,< ,>=,< =)和order by、group by发生的列,可考虑建立群集索引;

②.经常同时存取多列,且每列都含有重复值可考虑建立组合索引;

③.组合索引要尽量使关键查询形成索引覆盖,其前导列一定是使用最频繁的列。

二、不充份的连接条件:

例:表card有7896行,在card_no上有一个非聚集索引,表account有191122行,在account_no上有一个非聚集索引,试看在不同的表连接条件下,两个SQL的执行情况:

select sum(a.amount) from account a,card b where a.card_no = b.card_no(20秒)

select sum(a.amount) from account a,card b where a.card_no = b.card_no and a.account_no=b.account_no(< 1秒)

---- 分析:---- 在第一个连接条件下,最佳查询方案是将account作外层表,card作内层表,利用card上的索引,其I/O次数可由以下公式估算为:

外层表account上的22541页+(外层表account的191122行*内层表card上对应外层表第一行所要查找的3页)=595907次I/O

在第二个连接条件下,最佳查询方案是将card作外层表,account作内层表,利用account上的索引,其I/O次数可由以下公式估算为:外层表card上的1944页+(外层表card的7896行*内层表account上对应外层表每一行所要查找的4页)= 33528次I/O

可见,只有充份的连接条件,真正的最佳方案才会被执行。

总结:

1.多表操作在被实际执行前,查询优化器会根据连接条件,列出几组可能的连接方案并从中找出系统开销最小的最佳方案。连接条件要充份考虑带有索引的表、行数多的表;内外表的选择可由公式:外层表中的匹配行数*内层表中每一次查找的次数确定,乘积最小为最佳方案。

2.查看执行方案的方法-- 用set showplanon,打开showplan选项,就可以看到连接顺序、使用何种索引的信息;想看更详细的信息,需用sa角色执行dbcc(3604,310,302)。

三、不可优化的where子句

1.例:下列SQL条件语句中的列都建有恰当的索引,但执行速度却非常慢:

select * from record wheresubstring(card_no,1,4)=‘5378‘(13秒)

select * from record whereamount/30< 1000(11秒)

select * from record whereconvert(char(10),date,112)=‘19991201‘(10秒)

分析:

where子句中对列的任何操作结果都是在SQL运行时逐列计算得到的,因此它不得不进行表搜索,而没有使用该列上面的索引;

如果这些结果在查询编译时就能得到,那么就可以被SQL优化器优化,使用索引,避免表搜索,因此将SQL重写成下面这样:

select * from record where card_no like‘5378%‘(< 1秒)

select * from record where amount< 1000*30(< 1秒)

select * from record where date= ‘1999/12/01‘(< 1秒)

你会发现SQL明显快起来!

2.例:表stuff有200000行,id_no上有非群集索引,请看下面这个SQL:

select count(*) from stuff where id_no in(‘0‘,‘1‘)(23秒)

分析:---- where条件中的‘in‘在逻辑上相当于‘or‘,所以语法分析器会将in (‘0‘,‘1‘)转化为id_no =‘0‘ or id_no=‘1‘来执行。

我们期望它会根据每个or子句分别查找,再将结果相加,这样可以利用id_no上的索引;

但实际上(根据showplan),它却采用了"OR策略",即先取出满足每个or子句的行,存入临时数据库的工作表中,再建立唯一索引以去掉重复行,最后从这个临时表中计算结果。因此,实际过程没有利用id_no上索引,并且完成时间还要受tempdb数据库性能的影响。

实践证明,表的行数越多,工作表的性能就越差,当stuff有620000行时,执行时间竟达到220秒!还不如将or子句分开:

select count(*) from stuff where id_no=‘0‘select count(*) from stuff where id_no=‘1‘

得到两个结果,再作一次加法合算。因为每句都使用了索引,执行时间只有3秒,在620000行下,时间也只有4秒。

或者,用更好的方法,写一个简单的存储过程:

create proc count_stuff asdeclare @a intdeclare @b intdeclare @c intdeclare @d char(10)beginselect @a=count(*) from stuff where id_no=‘0‘select @b=count(*) from stuff where id_no=‘1‘endselect @c=@a+@bselect @d=convert(char(10),@c)print @d

直接算出结果,执行时间同上面一样快!

---- 总结:---- 可见,所谓优化即where子句利用了索引,不可优化即发生了表扫描或额外开销。

1.任何对列的操作都将导致表扫描,它包括数据库函数、计算表达式等等,查询时要尽可能将操作移至等号右边。

2.in、or子句常会使用工作表,使索引失效;如果不产生大量重复值,可以考虑把子句拆开;拆开的子句中应该包含索引。

3.要善于使用存储过程,它使SQL变得更加灵活和高效。

从以上这些例子可以看出,SQL优化的实质就是在结果正确的前提下,用优化器可以识别的语句,充份利用索引,减少表扫描的I/O次数,尽量避免表搜索的发生。其实SQL的性能优化是一个复杂的过程,上述这些只是在应用层次的一种体现,深入研究还会涉及数据库层的资源配置、网络层的流量控制以及操作系统层的总体设计。

时间: 2024-10-12 05:04:10

如何让你的SQL运行得更快的相关文章

代码示例:一些简单技巧优化JavaScript编译器工作详解,让你写出高性能运行的更快JavaScript代码

告诉你一些简单的技巧来优化JavaScript编译器工作,从而让你的JavaScript代码运行的更快.尤其是在你游戏中发现帧率下降或是当垃圾回收器有大量的工作要完成的时候. 单一同态: 当你定义了一个两个参数的函数,编译器会接受你的定义,如果函数参数的类型.个数或者返回值的类型改变编译器的工作会变得艰难.通常情况下,单一同态的数据结构和个数相同的参数会让你的程序会更好的工作. function example(a, b) { // 期望a,b都为数值类型 console.log(++a * +

让python代码运行的更快

原文地址:http://infiniteloop.in/blog/quick-python-performance-optimization-part-i/ 往往小的改变却能带来大的性能提升, 下面说下python中的几点性能优化. 1.使用timeit模块 2.减少函数的调用次数 3.使用xrange代替range 4.''.join()代替+,+= 5.while 1 代替 while True 6.列表解析>for循环>while循环 7.使用局部变量 8.创建生成器和使用yield 9

听说,你想让自己的Go程序运行的更快?

到现在为止,我已经忘记了我在写什么,但我确定这篇文章是关于Go语言的.这主要是一篇,关于运行速度,而不是开发速度的文章--这两种速度是有区别的. 我曾经和很多聪明的人一起工作.我们很多人都对性能问题很痴迷,我们之前所做的是尝试逼近能够预期的(性能)的极限.应用引擎有一些非常严格的性能要求,所以我们才会做出改变.自从使用了Go语言之后,我们已经学习到了很多提升性能以及让Go在系统编程中正常运转的方法. Go的简单和原生并发使其成为一门非常有吸引力的后端开发语言,但更大的问题是它如何应对延迟敏感的应

TQ2440开发板学习纪实(3)--- 设置时钟频率,让CPU运行的更快

0 原理 0.1 时钟源自哪里 所谓的时钟,就是电压高低的变化,只有不断的0,1交替变化,CPU才能被驱动运行.S3C2440支持多种时钟源,这通过CPU针脚OM3和OM3来选择.对于QT2440板子来说,OM3和OM2均直接接地,这就意味着时钟源来自针脚XTIpll和XTOpll,这两个针脚在TQ2440的核心板上被连接上了一个12MHz的晶振. 0.2 S3C2440的时钟原理与设置 CPU.RAM.UART等不同的设备运行时需要不同的时钟频率,这些不同的频率需要通过变频电路来提供,在电子行

如何设置虚拟内存,让电脑运行的更快

如何设置 如果电脑是因为内存不足而引起的运行缓慢,反应迟钝,则可以适当的设置虚拟内存的大小,来补偿内存的不足,加快系统的反应速度.其具体的做法如下: 在 “我的电脑’上鼠标右键单击,选择 ”属性“ . 2. 在 ”属性“ 弹出的页面中选择 “ 高级”,在 “性能” 区域中单击 “设置” 按钮. 3.在性能选项卡中选择高级,在 虚拟内存区域中 单击更改按钮 4. 选择一个空闲空间大的分区用来存放虚拟内存 Pagefile.sys  文件. 5. 在自定义大小区域中设置虚拟内存的大小为物理内存的1.

如何让python程序运行得更快

原则1:不优化 原则2:不要优化那些不重要的部分(否则会降低可读性) 解决方案: 1. 使用函数,局部变量比全局变量快很多.尽量使用函数,如main() 2. 有选择性的消除属性访问. 如多用 from math import sqrt 而不要直接再程序中多次调用 math.sqrt(), 或直接声明局部变量. import math def compute_roots(nums): sqrt = math.sqrt res = [] res_append = res.append for n

让Python代码更快运行的 5 种方法

不论什么语言,我们都需要注意性能优化问题,提高执行效率.选择了脚本语言就要忍受其速度,这句话在某种程度上说明了Python作为脚本语言的不足之处,那就是执行效率和性能不够亮.尽管Python从未如C和Java一般快速,但是不少Python项目都处于开发语言领先位置. Python很简单易用,但大多数人使用Python都知道在处理密集型cpu工作时,它的数量级依然低于C.Java和JavaScript.但不少第三方不愿赘述Python的优点,而是决定自内而外提高其性能.如果你想让Python在同一

让你的Python代码更快运行的 5 种方法

https://cloud.tencent.com/developer/news/354761 不论什么语言,我们都需要注意性能优化问题,提高执行效率.选择了脚本语言就要忍受其速度,这句话在某种程度上说明了Python作为脚本语言的不足之 处,那就是执行效率和性能不够亮.尽管Python从未如C和Java一般快速,但是不少Python项目都处于开发语言领先位置. Python 很简单易用,但大多数人使用Python都知道在处理密集型cpu工作时,它的数量级依然低于C.Java和JavaScrip

让Python跑得更快

点击关注 异步图书,置顶公众号 每天与你分享 IT好书 技术干货 职场知识 Tips 参与文末话题讨论,即有机会获得异步图书一本. Python很容易学.你之所以阅读本文可能是因为你的代码现在能够正确运行,而你希望它能跑得更快.你可以很轻松地修改代码,反复地实现你的想法,你对这一点很满意.但能够轻松实现和代码跑得够快之间的取舍却是一个世人皆知且令人惋惜的现象.而这个问题其实是可以解决的. 有些人想要让顺序执行的过程跑得更快.有些人需要利用多核架构.集群,或者图形处理单元的优势来解决他们的问题.有