矩阵(向量)求导

偶然间看到向量求导,发现自己竟然没有什么印象了,从网上扒来这篇总结,稍作修改贴在这里。原文:http://hujianjust.blog.163.com/blog/static/7245507220108138818616/

矩阵(向量)求导

1. 矩阵Y对标量x求导:

相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了

Y = [y(ij)] --> dY/dx = [dy(ji)/dx]

2. 标量y对列向量X求导:

注意与上面不同,这次括号内是求偏导,不转置,对N×1向量求导后还是N×1向量

y = f(x1,x2,..,xn) --> dy/dX = (Dy/Dx1,Dy/Dx2,..,Dy/Dxn)‘

3. 行向量Y‘对列向量X求导:

注意1×M向量对N×1向量求导后是N×M矩阵。

将Y的每一列对X求偏导,将各列构成一个矩阵。

重要结论:

dX‘/dX = I

d(AX)‘/dX = A‘

4. 列向量Y对行向量X’求导:

转化为行向量Y’对列向量X的导数,然后转置。

注意M×1向量对1×N向量求导结果为M×N矩阵。

dY/dX‘ = (dY‘/dX)‘

5. 向量积对列向量X求导运算法则:

注意与标量求导有点不同。

d(UV‘)/dX = (dU/dX)V‘ + U(dV‘/dX)

d(U‘V)/dX = (dU‘/dX)V + (dV‘/dX)U‘

重要结论:

d(X‘A)/dX = (dX‘/dX)A + (dA/dX)X‘ = IA + 0X‘ = A

d(AX)/dX‘ = (d(X‘A‘)/dX)‘ = (A‘)‘ = A

d(X‘AX)/dX = (dX‘/dX)AX + (d(AX)‘/dX)X = AX + A‘X

6. 矩阵Y对列向量X求导:

将Y对X的每一个分量求偏导,构成一个超向量。

注意该向量的每一个元素都是一个矩阵。

7. 矩阵积对列向量求导法则:

d(uV)/dX = (du/dX)V + u(dV/dX)

d(UV)/dX = (dU/dX)V + U(dV/dX)

重要结论:

d(X‘A)/dX = (dX‘/dX)A + X‘(dA/dX) = IA + X‘0 = A

8. 标量y对矩阵X的导数:

类似标量y对列向量X的导数,

把y对每个X的元素求偏导,不用转置。

dy/dX = [ Dy/Dx(ij) ]

重要结论:

y = U‘XV = ΣΣu(i)x(ij)v(j) 于是 dy/dX = = UV‘

y = U‘X‘XU 则 dy/dX = 2XUU‘

y = (XU-V)‘(XU-V) 则 dy/dX = d(U‘X‘XU - 2V‘XU + V‘V)/dX = 2XUU‘ - 2VU‘ + 0 = 2(XU-V)U‘

9. 矩阵Y对矩阵X的导数:

将Y的每个元素对X求导,然后排在一起形成超级矩阵。


另附几个重要文献,是矩阵微积分方面的数学知识。

矩阵求导 属于 矩阵计算,应该查找 Matrix Calculus 的文献:

http://www.psi.toronto.edu/matrix/intro.html#Intro

http://www.psi.toronto.edu/matrix/calculus.html

http://www.stanford.edu/~dattorro/matrixcalc.pdf

http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/IFEM.AppD.d/IFEM.AppD.pdf

http://www4.ncsu.edu/~pfackler/MatCalc.pdf

http://center.uvt.nl/staff/magnus/wip12.pdf

时间: 2024-10-04 06:16:02

矩阵(向量)求导的相关文章

机器学习中的矩阵向量求导(三) 矩阵向量求导之微分法

在机器学习中的矩阵向量求导(二) 矩阵向量求导之定义法中,我们讨论了定义法求解矩阵向量求导的方法,但是这个方法对于比较复杂的求导式子,中间运算会很复杂,同时排列求导出的结果也很麻烦.因此我们需要其他的一些求导方法.本文我们讨论使用微分法来求解标量对向量的求导,以及标量对矩阵的求导. 本文的标量对向量的求导,以及标量对矩阵的求导使用分母布局.如果遇到其他资料求导结果不同,请先确认布局是否一样. 1. 矩阵微分 在高数里面我们学习过标量的导数和微分,他们之间有这样的关系:$df =f'(x)dx$.

向量求导几则公式备忘

向量求导几则公式备忘 向量对向量求导公式:

矩阵轨求导

参考文档:matrix calculus 简单实用

[转载]机器学习中常用的矩阵求导公式

原文地址:机器学习中常用的矩阵求导公式作者:MachineLearner 矩阵求导好像读书的时候都没学过,因为讲矩阵的课程上不讲求导,讲求导的课又不提矩阵.如果从事机器学习方面的工作,那就一定会遇到矩阵求导的东西.维基百科上:http://en.wikipedia.org/wiki/Matrix_calculus , 根据Y与X的不同类型(实值,向量,矩阵),给出了具体的求导公式,以及一堆相关的公式,查起来都费劲. 其实在实际的机器学习工作中,最常用到的就是实值函数y对向量X的求导,定义如下(其

矩阵求导

Y = A * X --> DY/DX = A'Y = X * A --> DY/DX = AY = A' * X * B --> DY/DX = A * B'Y = A' * X' * B --> DY/DX = B * A' 于是把以前学过的矩阵求导部分整理一下: 1. 矩阵Y对标量x求导: 相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了 Y = [y(ij)] --> dY/dx = [dy(ji)/dx] 2. 标量y对列向量X求导: 注意与上面不同

[转载]矩阵求导公式

原文地址:矩阵求导公式[转]作者:三寅 今天推导公式,发现居然有对矩阵的求导,狂汗--完全不会.不过还好网上有人总结了.吼吼,赶紧搬过来收藏备份. 基本公式:Y = A * X --> DY/DX = A'Y = X * A --> DY/DX = AY = A' * X * B --> DY/DX = A * B'Y = A' * X' * B --> DY/DX = B * A' 1. 矩阵Y对标量x求导: 相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了 Y

[zt]矩阵求导公式

今天推导公式,发现居然有对矩阵的求导,狂汗--完全不会.不过还好网上有人总结了.吼吼,赶紧搬过来收藏备份. 基本公式:Y = A * X --> DY/DX = A'Y = X * A --> DY/DX = AY = A' * X * B --> DY/DX = A * B'Y = A' * X' * B --> DY/DX = B * A' 1. 矩阵Y对标量x求导: 相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了 Y = [y(ij)] --> dY/

矩阵求导问题

复杂矩阵问题求导方法:可以从小到大,从scalar到vector再到matrix. x is a column vector, A is a matrix practice:

【352】线性回归损失函数求导举例

参考:[351]实数对向量求导公式 参考:[352]矩阵转置性质 其他方法可参考 回归算法之线性回归. 线性回归的损失函数如下:$$E_b = {(X b - y)^T (X b - y)}$$ 将转置打开,像是开平方一样,运用到上面的性质:$$\begin{equation*}\begin{split}E_b &= (X b - y)^T (X b - y)\\\\&=((Xb)^T - y^T)(Xb-y)\\\\&=(b^T X^T - y^T)(Xb-y)\\\\&