用gensim学习word2vec

    在word2vec原理篇中,我们对word2vec的两种模型CBOW和Skip-Gram,以及两种解法Hierarchical Softmax和Negative Sampling做了总结。这里我们就从实践的角度,使用gensim来学习word2vec。

1. gensim安装与概述

    gensim是一个很好用的Python NLP的包,不光可以用于使用word2vec,还有很多其他的API可以用。它封装了google的C语言版的word2vec。当然我们可以可以直接使用C语言版的word2vec来学习,但是个人认为没有gensim的python版来的方便。

    安装gensim是很容易的,使用"pip install gensim"即可。但是需要注意的是gensim对numpy的版本有要求,所以安装过程中可能会偷偷的升级你的numpy版本。而windows版的numpy直接装或者升级是有问题的。此时我们需要卸载numpy,并重新下载带mkl的符合gensim版本要求的numpy,下载地址在此:http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy。安装方法和scikit-learn 和pandas 基于windows单机机器学习环境的搭建这一篇第4步的方法一样。

    安装成功的标志是你可以在代码里做下面的import而不出错:

from gensim.models import word2vec

2. gensim word2vec API概述

    在gensim中,word2vec 相关的API都在包gensim.models.word2vec中。和算法有关的参数都在类gensim.models.word2vec.Word2Vec中。算法需要注意的参数有:

    1) sentences: 我们要分析的语料,可以是一个列表,或者从文件中遍历读出。后面我们会有从文件读出的例子。

    2) size: 词向量的维度,默认值是100。这个维度的取值一般与我们的语料的大小相关,如果是不大的语料,比如小于100M的文本语料,则使用默认值一般就可以了。如果是超大的语料,建议增大维度。

    3) window:即词向量上下文最大距离,这个参数在我们的算法原理篇中标记为$c$,window越大,则和某一词较远的词也会产生上下文关系。默认值为5。在实际使用中,可以根据实际的需求来动态调整这个window的大小。如果是小语料则这个值可以设的更小。对于一般的语料这个值推荐在[5,10]之间。

    4) sg: 即我们的word2vec两个模型的选择了。如果是0, 则是CBOW模型,是1则是Skip-Gram模型,默认是0即CBOW模型。

    5) hs: 即我们的word2vec两个解法的选择了,如果是0, 则是Negative Sampling,是1的话并且负采样个数negative大于0, 则是Hierarchical Softmax。默认是0即Negative Sampling。

    6) negative:即使用Negative Sampling时负采样的个数,默认是5。推荐在[3,10]之间。这个参数在我们的算法原理篇中标记为neg。

    7) cbow_mean: 仅用于CBOW在做投影的时候,为0,则算法中的$x_w$为上下文的词向量之和,为1则为上下文的词向量的平均值。在我们的原理篇中,是按照词向量的平均值来描述的。个人比较喜欢用平均值来表示$x_w$,默认值也是1,不推荐修改默认值。

    8) min_count:需要计算词向量的最小词频。这个值可以去掉一些很生僻的低频词,默认是5。如果是小语料,可以调低这个值。

    9) iter: 随机梯度下降法中迭代的最大次数,默认是5。对于大语料,可以增大这个值。

    10) alpha: 在随机梯度下降法中迭代的初始步长。算法原理篇中标记为$\eta$,默认是0.025。

    11) min_alpha: 由于算法支持在迭代的过程中逐渐减小步长,min_alpha给出了最小的迭代步长值。随机梯度下降中每轮的迭代步长可以由iter,alpha, min_alpha一起得出。这部分由于不是word2vec算法的核心内容,因此在原理篇我们没有提到。对于大语料,需要对alpha, min_alpha,iter一起调参,来选择合适的三个值。

    以上就是gensim word2vec的主要的参数,下面我们用一个实际的例子来学习word2vec。

3. gensim  word2vec实战

    我选择的《人民的名义》的小说原文作为语料,语料原文在这里

    拿到了原文,我们首先要进行分词,这里使用结巴分词完成。在中文文本挖掘预处理流程总结中,我们已经对分词的原理和实践做了总结。因此,这里直接给出分词的代码,分词的结果,我们放到另一个文件中。代码如下, 加入下面的一串人名是为了结巴分词能更准确的把人名分出来。

# -*- coding: utf-8 -*-

import jieba
import jieba.analyse

jieba.suggest_freq(‘沙瑞金‘, True)
jieba.suggest_freq(‘田国富‘, True)
jieba.suggest_freq(‘高育良‘, True)
jieba.suggest_freq(‘侯亮平‘, True)
jieba.suggest_freq(‘钟小艾‘, True)
jieba.suggest_freq(‘陈岩石‘, True)
jieba.suggest_freq(‘欧阳菁‘, True)
jieba.suggest_freq(‘易学习‘, True)
jieba.suggest_freq(‘王大路‘, True)
jieba.suggest_freq(‘蔡成功‘, True)
jieba.suggest_freq(‘孙连城‘, True)
jieba.suggest_freq(‘季昌明‘, True)
jieba.suggest_freq(‘丁义珍‘, True)
jieba.suggest_freq(‘郑西坡‘, True)
jieba.suggest_freq(‘赵东来‘, True)
jieba.suggest_freq(‘高小琴‘, True)
jieba.suggest_freq(‘赵瑞龙‘, True)
jieba.suggest_freq(‘林华华‘, True)
jieba.suggest_freq(‘陆亦可‘, True)
jieba.suggest_freq(‘刘新建‘, True)
jieba.suggest_freq(‘刘庆祝‘, True)

with open(‘./in_the_name_of_people.txt‘) as f:
    document = f.read()

    #document_decode = document.decode(‘GBK‘)

    document_cut = jieba.cut(document)
    #print  ‘ ‘.join(jieba_cut)  //如果打印结果,则分词效果消失,后面的result无法显示
    result = ‘ ‘.join(document_cut)
    result = result.encode(‘utf-8‘)
    with open(‘./in_the_name_of_people_segment.txt‘, ‘w‘) as f2:
        f2.write(result)
f.close()
f2.close()

    拿到了分词后的文件,在一般的NLP处理中,会需要去停用词。由于word2vec的算法依赖于上下文,而上下文有可能就是停词。因此对于word2vec,我们可以不用去停词。

    现在我们可以直接读分词后的文件到内存。这里使用了word2vec提供的LineSentence类来读文件,然后套用word2vec的模型。这里只是一个示例,因此省去了调参的步骤,实际使用的时候,你可能需要对我们上面提到一些参数进行调参。

# import modules & set up logging
import logging
import os
from gensim.models import word2vec

logging.basicConfig(format=‘%(asctime)s : %(levelname)s : %(message)s‘, level=logging.INFO)

sentences = word2vec.LineSentence(‘./in_the_name_of_people_segment.txt‘) 

model = word2vec.Word2Vec(sentences, hs=1,min_count=1,window=3,size=100)  

    模型出来了,我们可以用来做什么呢?这里给出三个常用的应用。

    第一个是最常用的,找出某一个词向量最相近的词集合,代码如下:

req_count = 5
for key in model.wv.similar_by_word(‘沙瑞金‘.decode(‘utf-8‘), topn =100):
    if len(key[0])==3:
        req_count -= 1
        print key[0], key[1]
        if req_count == 0:
            break;

    我们看看沙书记最相近的一些3个字的词(主要是人名)如下:

高育良 0.967257142067
李达康 0.959131598473
田国富 0.953414440155
易学习 0.943500876427
祁同伟 0.942932963371

    第二个应用是看两个词向量的相近程度,这里给出了书中两组人的相似程度:

print model.wv.similarity(‘沙瑞金‘.decode(‘utf-8‘), ‘高育良‘.decode(‘utf-8‘))
print model.wv.similarity(‘李达康‘.decode(‘utf-8‘), ‘王大路‘.decode(‘utf-8‘))

    输出如下:

0.961137455325
0.935589365706

    第三个应用是找出不同类的词,这里给出了人物分类题:

print model.wv.doesnt_match(u"沙瑞金 高育良 李达康 刘庆祝".split())

      word2vec也完成的很好,输出为"刘庆祝"。

    以上就是用gensim学习word2vec实战的所有内容,希望对大家有所帮助。

(欢迎转载,转载请注明出处。欢迎沟通交流: [email protected])

时间: 2024-07-30 07:54:48

用gensim学习word2vec的相关文章

Python版的Word2Vector -- gensim 学习手札 中文词语相似性度量

前言 相关内容链接: 第一节:Google Word2vec 学习手札 昨天好不容易试用了一下Google自己提供的Word2Vector的源代码,花了好长时间训练数据,结果发现似乎Python并不能直接使用,于是上网找了一下Python能用的Word2Vector,这么一找,就找到了gensim gensim(应该要翻墙): http://radimrehurek.com/gensim/models/word2vec.html 安装 gensim有一些依赖,首先请先确保你安装了这些东西: Py

Python与自然语言处理(二)基于Gensim的Word2Vec

继续学习摸索,看到很多博客都在研究Word2Vec,感觉挺有意思,我也来尝试一下. 实验环境:Python3,Java8 Word2Vec的输入是句子序列,而每个句子又是一个单词列表,由于没有这样结构的现成输入,所以决定自己动手对原始语料进行预处理. NLPIR是一个汉语分词系统,挺感谢张华平博士,便利了我们的文本处理工作.下载地址:http://ictclas.nlpir.org/newsdownloads?DocId=389 这里还有一个自然语言处理与信息检索共享平台(感觉挺好的,有资料,还

gensim的word2vec如何得出词向量(python)

首先需要具备gensim包,然后需要一个语料库用来训练,这里用到的是skip-gram或CBOW方法,具体细节可以去查查相关资料,这两种方法大致上就是把意思相近的词映射到词空间中相近的位置. 语料库test8下载地址: http://mattmahoney.net/dc/text8.zip 这个语料库是从http://blog.csdn.net/m0_37681914/article/details/73861441这篇文章中找到的. 检查语料是否需要做预处理:将数据下载好了解压出来,在做词向量

深度学习word2vec笔记之算法篇

深度学习word2vec笔记之算法篇 声明:  本文转自推酷中的一篇博文http://www.tuicool.com/articles/fmuyamf,若有错误望海涵 前言 在看word2vec的资料的时候,经常会被叫去看那几篇论文,而那几篇论文也没有系统地说明word2vec的具体原理和算法,所以老衲就斗胆整理了一个笔记,希望能帮助各位尽快理解word2vec的基本原理,避免浪费时间. 当然如果已经了解了,就随便看看得了. 一. CBOW加层次的网络结构与使用说明 Word2vec总共有两种类

解决在使用gensim.models.word2vec.LineSentence加载语料库时报错 UnicodeDecodeError: 'utf-8' codec can't decode byte......的问题

在window下使用gemsim.models.word2vec.LineSentence加载中文维基百科语料库(已分词)时报如下错误: UnicodeDecodeError: 'utf-8' codec can't decode byte 0xca in position 0: invalid continuation byte 这种编码问题真的很让人头疼,这种问题都是出现在xxx.decode("utf-8")的时候,所以接下来我们来看看gensim中的源码: class Line

Python gensim库word2vec的使用

ip install gensim安装好库后,即可导入使用: 1.训练模型定义 from gensim.models import Word2Vec   model = Word2Vec(sentences, sg=1, size=100,  window=5,  min_count=5,  negative=3, sample=0.001, hs=1, workers=4)   参数解释: 0.sentences是训练所需语料,可通过以下方式进行加载 sentences=word2vec.Te

gensim中word2vec

from gensim.models import Word2Vec Word2Vec(self, sentences=None, size=100, alpha=0.025, window=5, min_count=5, max_vocab_size=None, sample=1e-3, seed=1, workers=3, min_alpha=0.0001, sg=0, hs=0, negative=5, cbow_mean=1, hashfxn=hash, iter=5, null_wor

学习Word2vec

有感于最近接触到的一些关于深度学习的知识,遂打算找个东西来加深理解.首选的就是以前有过接触,且火爆程度非同一般的word2vec.严格来说,word2vec的三层模型还不能算是完整意义上的深度学习,本人确实也是学术能力有限,就以此为例子,打算更全面的了解一下这个工具.在此期间,参考了[1][2][3]的博文,尤其以[1]的注释较为精彩.本文不涉及太多原理,想要对word2vec有更深入的了解,可以阅读Mikolov在2013年的两篇文章[4][5].同时文献[6]对word2vec中的模型和一些

深度学习word2vec笔记之应用篇

好不容易学了一个深度学习的算法,大家是否比较爽了?但是回头想想,学这个是为了什么?吹牛皮吗?写论文吗?参加竞赛拿奖吗? 不管哪个原因,都显得有点校园思维了. 站在企业的层面,这样的方式显然是不符合要求的,如果只是学会了,公式推通了,但是没有在工作中应用上,那会被老大认为这是没有产出的.没有产出就相当于没有干活,没有干活的话就……呃……不说了. 下面就给大家弄些例子,说说在互联网广告这一块的应用吧. 一.对广告主的辅助 1.1基本概念 互联网广告的广告主其实往往有他们的困惑,他们不知道自己的目标人