Harris角点算子

Harris算子是Harris和Stephens在1998年提出的一种基于信号的点特征提取算子。其前身是Moravec算子。其基本思想是:在图像中设计一个局部检测窗口,当该窗口沿各个方向做微小移动时,考察窗口的平均能量变化,当该能量变化超过设定的阈值时,就将窗口的中心像素点提取为角点。

Moravec提出的角点检测公式为:

时间: 2024-10-10 02:10:27

Harris角点算子的相关文章

【OpenCV十六新手教程】OpenCV角检测Harris角点检测

本系列文章由@浅墨_毛星云 出品.转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/29356187 作者:毛星云(浅墨)    微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: [email protected] 写作当前博文时配套使用的OpenCV版本号: 2.4.9 本篇文章中,我们一起探讨了OpenCV

图像特征检测:Harris角点

1. 不同类型的角点 在现实世界中,角点对应于物体的拐角,道路的十字路口.丁字路口等.从图像分析的角度来定义角点可以有以下两种定义: 角点可以是两个边缘的角点: 角点是邻域内具有两个主方向的特征点:        前者往往需要对图像边缘进行编码,这在很大程度上依赖于图像的分割与边缘提取,具有相当大的难度和计算量,且一旦待检测目标局部发生变化,很可能导致操作的失败.早期主要有Rosenfeld和Freeman等人的方法,后期有CSS等方法. 基于图像灰度的方法通过计算点的曲率及梯度来检测角点,避免

角点检测:Harris角点及Shi-Tomasi角点检测

角点 特征检测与匹配是Computer Vision 应用总重要的一部分,这需要寻找图像之间的特征建立对应关系.点,也就是图像中的特殊位置,是很常用的一类特征,点的局部特征也可以叫做“关键特征点”(keypoint feature),或“兴趣点”(interest point),或“角点”(conrner). 关于角点的具体描述可以有几种: 一阶导数(即灰度的梯度)的局部最大所对应的像素点: 两条及两条以上边缘的交点: 图像中梯度值和梯度方向的变化速率都很高的点: 角点处的一阶导数最大,二阶导数

openCV2马拉松第19圈——Harris角点检测(自己实现)

计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g/article/details/26824529 收入囊中 使用OpenCV的connerHarris实现角点检测 自己实现Harris算法 下面是自己实现的一个效果图 因为阀值设置比较高,所以房屋周围没有找出来 葵花宝典 在此之前,我们讲过边缘的检测,边缘检测的基本原理就是x方向或者y方向梯度变化很大,角点,顾名思义,就是两个方向的梯度变化都很大. 左1,平滑区域,没有边缘和角点

图像特征检测之Harris角点算法

        图像检测是图像分割,图像识别的基础,也是不可缺少的关键.在视觉计算理论框架中,抽取二维图像的边缘.角点.纹理等基本特征,是整个框架的第一步:本文章对Harris角点算法做了比较详细的理论介绍以及相关实现. Part One:角点类型介绍 在现实世界中,角点对应于物体的拐角,道路的十字路口.丁字路口等.从图像分析的角度来定义角点可以有以下两种定义: 角点可以是两个边缘的角点: 角点是邻域内具有两个主方向的特征点                                    

特征点提取之Harris角点提取法

1. 特征点提取的意义 2.角点 3. Harris角点检測的基本原理 4.Harris角点检測算法的步骤 5.Harris角点提取算法设计 <span style="font-size:18px;">function [ptx,pty] = HarrisPoints(ImgIn,threshold) % Harris角点提取算法 %计算图像亮度f(x,y)在点(x,y)处的梯度----------------------------------------- fx = [

Opencv图像识别从零到精通(33)----moravec角点、harris角点

一.角点 图像处理和与计算机视觉领域,兴趣点(interest points),或称作关键点(keypoints).特征点(feature points) 被大量用于解决物体识别,图像识别.图像匹配.视觉跟踪.三维重建等一系列的问题.我们不再观察整幅图,而是选择某些特殊的点,然后对他们进行局部有的放矢的分析.如果能检测到足够多的这种点,同时他们的区分度很高,并且可以精确定位稳定的特征,那么这个方法就有使用价值. 图像特征类型可以被分为如下三种: <1>边缘                   

【OpenCV】角点检测:Harris角点及Shi-Tomasi角点检测

角点 特征检测与匹配是Computer Vision 应用总重要的一部分,这需要寻找图像之间的特征建立对应关系.点,也就是图像中的特殊位置,是很常用的一类特征,点的局部特征也可以叫做“关键特征点”(keypoint feature),或“兴趣点”(interest point),或“角点”(conrner). 关于角点的具体描述可以有几种: 一阶导数(即灰度的梯度)的局部最大所对应的像素点: 两条及两条以上边缘的交点: 图像中梯度值和梯度方向的变化速率都很高的点: 角点处的一阶导数最大,二阶导数

Harris角点及Shi-Tomasi角点检测(转)

一.角点定义 有定义角点的几段话: 1.角点检测(Corner Detection)是计算机视觉系统中用来获得图像特征的一种方法,广泛应用于运动检测.图像匹配.视频跟踪.三维建模和目标识别等领域中.也称为特征点检测. 角点通常被定义为两条边的交点,更严格的说,角点的局部邻域应该具有两个不同区域的不同方向的边界.而实际应用中,大多数所谓的角点检测方法检测的是拥有特定特征的图像点,而不仅仅是"角点".这些特征点在图像中有具体的坐标,并具有某些数学特征,如局部最大或最小灰度.某些梯度特征等.