Quoit Design |
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) |
Total Submission(s): 130 Accepted Submission(s): 72 |
Problem Description Have you ever played quoit in a playground? Quoit is a game in which flat rings are pitched at some toys, with all the toys encircled awarded. Assume that all the toys are points on a plane. A point is encircled by the ring if the distance between the point and the center of the ring is strictly less than the radius of the ring. If two toys are placed at the same point, the radius of the ring is considered to be 0. |
Input The input consists of several test cases. For each case, the first line contains an integer N (2 <= N <= 100,000), the total number of toys in the field. Then N lines follow, each contains a pair of (x, y) which are the coordinates of a toy. The input is terminated by N = 0. |
Output For each test case, print in one line the radius of the ring required by the Cyberground manager, accurate up to 2 decimal places. |
Sample Input 2 0 0 1 1 2 1 1 1 1 3 -1.5 0 0 0 0 1.5 0 |
Sample Output 0.71 0.00 0.75 |
题目要求求一个最近点对。
参考了一下别人的方法。
神分治 + 神剪支 + 神排序 就过了。
学习了一种新的排序方法 。 有所收获~~
#include <cstdio> #include <algorithm> #include <cstring> #include <cmath> #include <iostream> using namespace std; const int N = 100010; const double INF = 1e10; struct node{ double x, y ; }e[N]; int n ; inline bool cmpx(const node &a , const node &b ){ return a.x <b.x ; } inline bool cmpy(const int a , const int b ){ return e[a].y < e[b].y ; } inline double dis( const node a , const node b ){ return sqrt ( ( a.x - b.x ) * ( a.x - b.x ) + ( a.y - b.y ) *( a.y - b.y ) ); } int a[N]; double solve( int l , int r ) { if( l + 1 == r ) return dis( e[l] , e[r] ); if( l + 2 == r ) return min( dis( e[l],e[r] ) , min( dis( e[l] ,e[l+1] ) , dis( e[l+1] , e[r]) ) ); int mid = ( l + r ) >> 1; double ans = min( solve( l , mid ) , solve( mid + 1 , r) ) ; int cnt = 0 ; for( int i = l ; i <= r ; ++i ){ if( e[i].x >= e[mid].x - ans && e[i].x <= e[mid].x + ans ){ a[cnt++] = i ; } } sort ( a , a + cnt , cmpy ); for( int i = 0 ; i < cnt ; ++ i ){ for( int j = i + 1 ; j < cnt ; ++j ){ if( e[ a[i] ].y + ans <= e[ a[j] ] .y )break ; ans = min( ans , dis( e[ a[i] ] ,e[ a[j] ] ) ); } } return ans ; } int main() { ios::sync_with_stdio(false); while( cin >> n && n ){ for( int i = 0 ; i < n ; ++i ){ cin >> e[i].x >> e[i].y ; } sort( e, e + n , cmpx ); printf("%.2lf\n", ( solve( 0 ,n-1 ) / 2.0 ) ); } }