cart回归树算法过程

回归树:使用平方误差最小准则

训练集为:D={(x1,y1), (x2,y2), …, (xn,yn)}。

输出Y为连续变量,将输入划分为M个区域,分别为R1,R2,…,RM,每个区域的输出值分别为:c1,c2,…,cm则回归树模型可表示为:

则平方误差为:

假如使用特征j的取值s来将输入空间划分为两个区域,分别为:

我们需要最小化损失函数,即:

  其中c1,c2分别为R1,R2区间内的输出平均值。(此处与统计学习课本上的公式有所不同,在课本中里面的c1,c2都需要取最小值,但是,在确定的区间中,当c1,c2取区间输出值的平均值时其平方会达到最小,为简单起见,故而在此直接使用区间的输出均值。)

  为了使平方误差最小,我们需要依次对每个特征的每个取值进行遍历,计算出当前每一个可能的切分点的误差,最后选择切分误差最小的点将输入空间切分为两个部分,然后递归上述步骤,直到切分结束。此方法切分的树称为最小二乘回归树。

最小二乘回归树生成算法:

1)依次遍历每个特征j,以及该特征的每个取值s,计算每个切分点(j,s)的损失函数,选择损失函数最小的切分点。

2)使用上步得到的切分点将当前的输入空间划分为两个部分

3)然后将被划分后的两个部分再次计算切分点,依次类推,直到不能继续划分。

4)最后将输入空间划分为M个区域R1,R2,…,RM,生成的决策树为:

其中cm为所在区域的输出值的平均。

  总结:此方法的复杂度较高,尤其在每次寻找切分点时,需要遍历当前所有特征的所有可能取值,假如总共有F个特征,每个特征有N个取值,生成的决策树有S个内部节点,则该算法的时间复杂度为:O(F*N*S)

时间: 2024-10-26 11:42:11

cart回归树算法过程的相关文章

CART分类回归树算法

CART分类回归树算法 与上次文章中提到的ID3算法和C4.5算法类似,CART算法也是一种决策树分类算法.CART分类回归树算法的本质也是对数据进行分类的,最终数据的表现形式也是以树形的模式展现的,与ID3,C4.5算法不同的是,他的分类标准所采用的算法不同了.下面列出了其中的一些不同之处: 1.CART最后形成的树是一个二叉树,每个节点会分成2个节点,左孩子节点和右孩子节点,而在ID3和C4.5中是按照分类属性的值类型进行划分,于是这就要求CART算法在所选定的属性中又要划分出最佳的属性划分

机器学习回顾篇(8):CART决策树算法

注:本系列所有博客将持续更新并发布在github和gitee上,您可以通过github.gitee下载本系列所有文章笔记文件. 1 引言 上一篇博客中介绍了ID3和C4.5两种决策树算法,这两种决策树都只能用于分类问题,而本文要说的CART(classification and regression tree)决策树不仅能用于分类问题,也能用于回归问题. 与ID3算法和C4.5算法相比,CART 还有个特性就是其所有非叶子结点都只有两个子树,也就是说在根据特征属性分裂数据集时,无论该特征属性有多

CART回归树基本原理(具体例子)

一.概念 CART全称叫Classification and Regression Tree.首先要强调的是CART假设决策树是二叉树,内部结点特征的取值只有“是”和“否”,左分支是取值为“是”的分支,有分支则相反.这样的决策树等价于递归地二分每个特征. 二.CART生成 决策树的生成就是递归地构建二叉决策树的过程,对回归树用平方误差最小化准则,对分类树用基尼指数最小化准则,进行特征选择,生成二叉树. 三.回归树的生成最小二叉回归树生成算法: 1.选择最优切分变量j与切分点s,求解: 遍历变量j

CART回归树(chap9)Machine Learning In Action学习笔记

后续再次学习,现在理解有些模糊. 优点:可以对复杂和非线性的数据建模 缺点:结果不易理解 适用数据类型:数值型(转换成二值型)和标称型数据 树回归的一般方法 收集数据:采用任意方法收集数据. 准备数据:需要数值型的数据,标称型数据应该映射成二值型数据. 分析数据:绘出数据的二维可视化显示结果,以字典方式生成树. 训练算法:大部分时间都花费在叶节点树模型的构建上. 测试算法:使用测试数据上的R2值来分析模型的效果. 使用算法:使用训练出的树做预测,预测结果还可以用来做很多事情 回归树与分类树的思路

决策树算法原理

转载于:http://www.cnblogs.com/pinard/p/6050306.html (楼主总结的很好,就拿来主义了,不顾以后还是多像楼主学习) 决策树算法在机器学习中算是很经典的一个算法系列了.它既可以作为分类算法,也可以作为回归算法,同时也特别适合集成学习比如随机森林.本文就对决策树算法原理做一个总结,上篇对ID3, C4.5的算法思想做了总结,下篇重点对CART算法做一个详细的介绍.选择CART做重点介绍的原因是scikit-learn使用了优化版的CART算法作为其决策树算法

决策树算法(二)

在决策树算法原理(上)这篇里,我们讲到了决策树里ID3算法,和ID3算法的改进版C4.5算法.对于C4.5算法,我们也提到了它的不足,比如模型是用较为复杂的熵来度量,使用了相对较为复杂的多叉树,只能处理分类不能处理回归等.对于这些问题, CART算法大部分做了改进.CART算法也就是我们下面的重点了.由于CART算法可以做回归,也可以做分类,我们分别加以介绍,先从CART分类树算法开始,重点比较和C4.5算法的不同点.接着介绍CART回归树算法,重点介绍和CART分类树的不同点.然后我们讨论CA

决策树算法原理(下)

1. CART分类树算法的最优特征选择方法 2. CART分类树算法对于连续特征和离散特征处理的改进 3. CART分类树建立算法的具体流程 4. CART回归树建立算法 5. CART树算法的剪枝 6. CART算法小结 7. 决策树算法小结 在决策树算法原理(上)这篇里,我们讲到了决策树里ID3算法,和ID3算法的改进版C4.5算法.对于C4.5算法,我们也提到了它的不足,比如模型是用较为复杂的熵来度量,使用了相对较为复杂的多叉树,只能处理分类不能处理回归等.对于这些问题, CART算法大部

模式识别:分类回归决策树CART的研究与实现

摘 要:本实验的目的是学习和掌握分类回归树算法.CART提供一种通用的树生长框架,它可以实例化为各种各样不同的判定树.CART算法采用一种二分递归分割的技术,将当前的样本集分为两个子样本集,使得生成的决策树的每个非叶子节点都有两个分支.因此,CART算法生成的决策树是结构简洁的二叉树.在MATLAB平台上编写程序,较好地实现了非剪枝完全二叉树的创建.应用以及近似剪枝操作,同时把算法推广到多叉树. 一.技术论述 1.非度量方法 在之前研究的多种模式分类算法中,经常会使用到样本或向量之间距离度量(d

机器学习经典算法详解及Python实现--CART分类决策树、回归树和模型树

摘要: Classification And Regression Tree(CART)是一种很重要的机器学习算法,既可以用于创建分类树(Classification Tree),也可以用于创建回归树(Regression Tree),本文介绍了CART用于离散标签分类决策和连续特征回归时的原理.决策树创建过程分析了信息混乱度度量Gini指数.连续和离散特征的特殊处理.连续和离散特征共存时函数的特殊处理和后剪枝:用于回归时则介绍了回归树和模型树的原理.适用场景和创建过程.个人认为,回归树和模型树