java一些常用并发工具示例

最近把《java并发编程实战》-Java Consurrency in Practice 重温了一遍,把书中提到的一些常用工具记录于此:

一、闭锁(门栓)- CountDownLatch

适用场景:多线程测试时,通常为了精确计时,要求所有线程都ready后,才开始执行,防止有线程先起跑,造成不公平,类似时,所有线程执行完,整个程序才算运行完成。

    /**
     * 闭锁测试(菩提树下的杨过 http://yjmyzz.cnblogs.com/)
     *
     * @throws InterruptedException
     */
    @Test
    public void countdownLatch() throws InterruptedException {
        CountDownLatch startLatch = new CountDownLatch(1); //类似发令枪
        CountDownLatch endLatch = new CountDownLatch(10);//这里的数量,要与线程数相同

        for (int i = 0; i < 10; i++) {
            Thread t = new Thread(() -> {
                try {
                    startLatch.await(); //先等着,直到发令枪响,防止有线程先run
                    System.out.println(Thread.currentThread().getName() + " is running...");
                    Thread.sleep(10);
                } catch (InterruptedException e) {
                    Thread.currentThread().interrupt();
                } finally {
                    endLatch.countDown(); //每个线程执行完成后,计数
                }
            });
            t.setName("线程-" + i);
            t.start();
        }
        long start = System.currentTimeMillis();
        startLatch.countDown();//发令枪响,所有线程『开跑』
        endLatch.await();//等所有线程都完成
        long end = System.currentTimeMillis();
        System.out.println("done! exec time => " + (end - start) + " ms");
    }  

执行结果:

线程-1 is running...
线程-5 is running...
线程-8 is running...
线程-4 is running...
线程-3 is running...
线程-0 is running...
线程-2 is running...
线程-9 is running...
线程-7 is running...
线程-6 is running...
done! exec time => 13 ms

注:大家可以把第14行注释掉,再看看运行结果有什么不同。

二、信号量(Semaphore)

适用场景:用于资源数有限制的并发访问场景。

   public class BoundedHashSet<T> {
        private final Set<T> set;
        private final Semaphore semaphore;

        public BoundedHashSet(int bound) {
            this.set = Collections.synchronizedSet(new HashSet<T>());
            this.semaphore = new Semaphore(bound);
        }

        public boolean add(T t) throws InterruptedException {
            if (!semaphore.tryAcquire(5, TimeUnit.SECONDS)) {
                return false;
            }
            ;
            boolean added = false;
            try {
                added = set.add(t);
                return added;
            } finally {
                if (!added) {
                    semaphore.release();
                }
            }
        }

        public boolean remove(Object o) {
            boolean removed = set.remove(o);
            if (removed) {
                semaphore.release();
            }
            return removed;
        }
    }

    @Test
    public void semaphoreTest() throws InterruptedException {

        BoundedHashSet<String> set = new BoundedHashSet<>(5);
        for (int i = 0; i < 6; i++) {
            if (set.add(i + "")) {
                System.out.println(i + " added !");
            } else {
                System.out.println(i + " not add to Set!");
            }
        }
    }

上面的示例将一个普通的Set变成了有界容器。执行结果如下:

0 added !
1 added !
2 added !
3 added !
4 added !
5 not add to Set!

三、栅栏CyclicBarrier

这个跟闭锁类似,可以通过代码设置一个『屏障』点,其它线程到达该点后才能继续,常用于约束其它线程都到达某一状态后,才允许做后面的事情。

    public class Worker extends Thread {

        private CyclicBarrier cyclicBarrier;

        public Worker(CyclicBarrier cyclicBarrier) {
            this.cyclicBarrier = cyclicBarrier;
        }

        private void step1() {
            System.out.println(this.getName() + " step 1 ...");
        }

        private void step2() {
            System.out.println(this.getName() + " step 2 ...");
        }

        public void run() {
            step1();
            try {
                cyclicBarrier.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            } catch (BrokenBarrierException e) {
                e.printStackTrace();
            }
            step2();
        }
    }

    @Test
    public void cyclicBarrierTest() throws InterruptedException, BrokenBarrierException {
        CyclicBarrier cyclicBarrier = new CyclicBarrier(11);
        for (int i = 0; i < 10; i++) {
            Worker w = new Worker(cyclicBarrier);
            w.start();
        }
        cyclicBarrier.await();

    }

这里我们假设有一个worder线程,里面有2步操作,要求所有线程完成step1后,才能继续step2. 执行结果如下:

Thread-0 step 1 ...
Thread-1 step 1 ...
Thread-2 step 1 ...
Thread-3 step 1 ...
Thread-4 step 1 ...
Thread-5 step 1 ...
Thread-6 step 1 ...
Thread-7 step 1 ...
Thread-8 step 1 ...
Thread-9 step 1 ...
Thread-9 step 2 ...
Thread-0 step 2 ...
Thread-3 step 2 ...
Thread-4 step 2 ...
Thread-6 step 2 ...
Thread-2 step 2 ...
Thread-1 step 2 ...
Thread-8 step 2 ...
Thread-7 step 2 ...
Thread-5 step 2 ...

四、Exchanger

如果2个线程需要交换数据,Exchanger就能派上用场了,见下面的示例:

    @Test
    public void exchangerTest() {
        Exchanger<String> exchanger = new Exchanger<>();

        Thread t1 = new Thread(() -> {
            String temp = "AAAAAA";
            System.out.println("thread 1 交换前:" + temp);
            try {
                temp = exchanger.exchange(temp);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("thread 1 交换后:" + temp);
        });

        Thread t2 = new Thread(() -> {
            String temp = "BBBBBB";
            System.out.println("thread 2 交换前:" + temp);
            try {
                temp = exchanger.exchange(temp);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("thread 2 交换后:" + temp);
        });

        t1.start();
        t2.start();
    }

 执行结果:

thread 1 交换前:AAAAAA
thread 2 交换前:BBBBBB
thread 2 交换后:AAAAAA
thread 1 交换后:BBBBBB

五、FutureTask/Future

一些很耗时的操作,可以用Future转化成异步,不阻塞后续的处理,直到真正需要返回结果时调用get拿到结果

    @Test
    public void futureTaskTest() throws ExecutionException, InterruptedException, TimeoutException {

        Callable<String> callable = () -> {
            System.out.println("很耗时的操作处理中。。。");
            Thread.sleep(5000);
            return "done";
        };

        FutureTask<String> futureTask = new FutureTask<>(callable);

        System.out.println("就绪。。。");
        new Thread(futureTask).start();
        System.out.println("主线程其它处理。。。");
        System.out.println(futureTask.get());
        System.out.println("处理完成!");

        System.out.println("-----------------");

        System.out.println("executor 就绪。。。");
        ExecutorService executorService = Executors.newSingleThreadExecutor();
        Future<String> future = executorService.submit(callable);
        System.out.println(future.get(10, TimeUnit.SECONDS));
    }

 执行结果:

就绪。。。
主线程其它处理。。。
很耗时的操作处理中。。。
done
处理完成!
-----------------
executor 就绪。。。
很耗时的操作处理中。。。
done

六、阻塞队列BlockingQueue

阻塞队列可以在线程间实现生产者-消费者模式。比如下面的示例:线程producer模拟快速生产数据,而线程consumer模拟慢速消费数据,当达到队列的上限时(即:生产者产生的数据,已经放不下了),队列就堵塞住了。

@Test
    public void blockingQueueTest() throws InterruptedException {
        final BlockingQueue<String> blockingDeque = new ArrayBlockingQueue<>(5);

        Thread producer = new Thread() {
            public void run() {
                Random rnd = new Random();
                while (true) {
                    try {
                        int i = rnd.nextInt(10000);
                        blockingDeque.put(i + "");
                        System.out.println(this.getName() + " 产生了一个数字:" + i);
                        Thread.sleep(rnd.nextInt(50));//模拟生产者快速生产
                    } catch (InterruptedException e) {
                        Thread.currentThread().interrupt();
                    }
                }
            }
        };
        producer.setName("producer 1");

        Thread consumer = new Thread() {
            public void run() {
                while (true) {
                    Random rnd = new Random();
                    try {

                        String i = blockingDeque.take();
                        System.out.println(this.getName() + " 消费了一个数字:" + i);
                        Thread.sleep(rnd.nextInt(10000));//消费者模拟慢速消费
                    } catch (InterruptedException e) {
                        Thread.currentThread().interrupt();
                    }
                }
            }
        };
        consumer.setName("consumer 1");

        producer.start();
        consumer.start();

        while (true) {
            Thread.sleep(100);
        }
    }

执行结果:

producer 1 产生了一个数字:6773
consumer 1 消费了一个数字:6773
producer 1 产生了一个数字:4456
producer 1 产生了一个数字:8572
producer 1 产生了一个数字:5764
producer 1 产生了一个数字:2874
producer 1 产生了一个数字:780 # 注意这里就已经堵住了,直到有消费者消费一条数据,才能继续生产
consumer 1 消费了一个数字:4456
producer 1 产生了一个数字:4193

时间: 2024-12-15 10:26:31

java一些常用并发工具示例的相关文章

java中常用的工具类(二)

下面继续分享java中常用的一些工具类,希望给大家带来帮助! 1.FtpUtil Java 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

java中常用的工具类(三)

继续分享java中常用的一些工具类.前两篇的文章中有人评论使用Apache 的lang包和IO包,或者Google的Guava库.后续的我会加上的!谢谢支持IT江湖 一.连接数据库的综合类 Java 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

java中常用的工具类(一)

我们java程序员在开发项目的是常常会用到一些工具类.今天我汇总了一下java中常用的工具方法.大家可以在项目中使用.可以收藏!加入IT江湖官方群:383126909 我们一起成长 一.String工具类 Java 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 5

java中常用的工具类

一.String工具类 package com.itjh.javaUtil; import java.util.ArrayList; import java.util.List; /** * * String工具类. <br> * * @author 宋立君 * @date 2014年06月24日 */ public class StringUtil { private static final int INDEX_NOT_FOUND = -1; private static final St

JavaEE Tutorials (27) - Java EE的并发工具

27.1并发基础427 27.1.1线程和进程42827.2并发工具的主要组件42827.3并发和事务42927.4并发和安全43027.5jobs并发示例430 27.5.1运行jobs示例43027.6taskcreator并发示例433 27.6.1运行taskcreator示例43527.7关于并发工具的更多信息436

Java编程常用的工具都有哪些?

在当今的互联网信息发展的时代,IT行业已经成为了热门行业发展之一,凌阳教育的老师曾经说过Java也取而代之的已经成为现在的主流,对于Java编程中我们经常都会常见的一些常用的工具,下面小编就带大家来了解一下吧: 1.ServiceLoader-加载服务主要是用阿里获取接口的所有实现 Java开发人员常常希望将使用和创建组件的内容区分开来,这通常是通过创建一个描述组件动作的接口,并使用某种中介创建组件实例来完成的. 2.SCanner 有无数Java工具能帮助您构建解析器,很多函数语言已成功构建解

Java笔记:并发工具

一.基础知识 并发工具定义了一些核心特征,用于以其他方式实现同步和线程间通信. 同步器:提供了同步多线程间交互的高级方法. 执行器:管理线程的执行. 并发集合:提供了由集合框架定义的相关类的并发替代版本. Fork/Join框架:支持并行编程. 二.同步对象使用 Semaphore实现了经典的信号量,信号量通过计数器控制对共享资源的访问.如果计数器大于0则允许访问,如果计数器为0则拒绝访问.希望获得共享资源的线程尝试获得许可证,若允许访问则线程可得到许可证,若不允许访问则线程阻塞直至得到许可证为

Java实现锁、公平锁、读写锁、信号量、阻塞队列、线程池等常用并发工具

锁的实现 锁的实现其实很简单,主要使用Java中synchronized关键字. public class Lock { private volatile boolean isLocked = false; private Thread lockingThread = null; public synchronized void lock() throws InterruptedExpection { while(isLocked){ wait(); } isLocked = true; loc

java jvm常用命令工具

[尊重原创文章出自:http://www.chepoo.com/java-jvm-command-tools.html] 一.概述 程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志.堆dump文件.线程dump文件.GC日志等.通过虚拟机监控和诊断工具可以帮忙我们快速获取.分析需要的数据,进而提高问题解决速度. 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具: jps 显示系统中所有Hotspot虚拟机进程 jstat 收集Hotspot虚拟机各方