算法导论01 几种排序以及其时间复杂度01

冒泡排序

#include<stdio.h>
int main()
{
	int a[10],i,j,t;
	for(i=0;i<10;i++)
		scanf("%d",&a[i]);

	for(i=0;i<10;i++)
	{
		for(j=i+1;j<10;j++)
		{
			if(a[i]>a[j])
			{
				t=a[i];
				a[i]=a[j];
				a[j]=t;
			}
		}
	}
	for(i=0;i<10;i++)
		printf("%3d",a[i]);

}

  即第一层的for语句代表这一列共有多少数字,第二层的for语句代表相应的这一个数字需要与n-i个数字比较大小。

时间: 2024-08-24 01:06:38

算法导论01 几种排序以及其时间复杂度01的相关文章

《算法导论》读书笔记之第16章 0-1背包问题—动态规划求解

原文:http://www.cnblogs.com/Anker/archive/2013/05/04/3059070.html 1.前言 前段时间忙着搞毕业论文,看书效率不高,导致博客一个多月没有更新了.前段时间真是有些堕落啊,混日子的感觉,很少不爽.今天开始继续看算法导论.今天继续学习动态规划和贪心算法.首先简单的介绍一下动态规划与贪心算法的各自特点及其区别.然后针对0-1背包问题进行讨论.最后给出一个简单的测试例子,联系动态规划实现0-1背包问题. 2.动态规划与贪心算法 关于动态规划的总结

算法导论22.4拓扑排序 练习总结 (转载)

22.4-1 给出算法 TOPOLOGICAL-SORT 运行于图 22-8 上时所生成的结点次序.这里的所有假设和练习 22.3-2 一样. ANSWER:   22.4-2 请给出一个线性时间的算法,算法的输入为一个有向无环图 G = (V, E) 以及两个结点 s 和 t,算法的输出是从结点 s 到结点 t 之间的简单路径的数量.例如,对于图 22-8 所示的有向无环图,从结点 p 到结点 v 一共有 4 条简单路径,分别是 pov.poryv.posryv 和 psryv.(本题仅要求计

[一周一算法]算法导论学习之计数排序

计数排序是一种线性时间的排序,同时也是一种非比较排序 代码如下: 1 void CountingSort(int *data, int k, int num) // A ~ data[], B ~ aimArray[], C ~ tempArray[] 2 { 3 int *aimArray = new int[num]; 4 int *tempArray = new int[k + 1]; 5 for (int i = 0; i <= k; i++) 6 tempArray[i] = 0; 7

八种排序算法(内部排序)

八种排序算法很长时间没有使用了,今天做一个总结,方便以后自己用的时候参考. 这八种排序算法都是内部算法,这八种排序算法分别是: 1. 插入排序 1)直接插入排序 2)希尔排序 2.选择排序 1)简单选择排序 2)堆排序 3.交换排序 1)冒泡排序 2)快速排序 4.归并排序 5.基数排序 一.直接插入排序 将一个记录插入到已经排好序的有序表中,从而得到一个新的.记录数增1的有序表.在实际操作中,先将序列的第一个记录看成是一个有序的子序列,然后从第二个.第三个.……记录逐个进行插入,直至整个序列有

算法系列之图--拓扑排序

本文介绍使用深度先搜索对向无环图(DAG)进行拓扑排序. 对于一个有向无环图G=(V,E)来说,其拓扑排序是G中所有结点的一种线性次序,该次序满足如下条件:如果G包含边(u,v)则结点u在拓扑排序中处于结点v的前面(若图G包含一个环路则不可能排出一个线性次序).可将图中的拓扑排序看成是将图的所有结点在一条水平线上排开,图中所有边都从左指向右. 给一个拓扑图如下示: 拓扑排序算法与DFS相似,但是在拓扑排序的过程中,每个结点都是后与其临接链表里的结点而放入Stack中. 具体代码如下示: 1 #i

《算法导论》读书笔记(七)

前言:贪心算法也是用来解决最优化问题,将一个问题分成子问题,在现在子问题最优解的时,选择当前看起来是最优的解,期望通过所做的局部最优选择来产生一个全局最优解.书中先从活动选择问题来引入贪心算法,分别采用动态规划方法和贪心算法进行分析.本篇笔记给出活动选择问题的详细分析过程,并给出详细的实现代码进行测试验证.关于贪心算法的详细分析过程,下次在讨论. 1.活动选择问题描述   有一个需要使用每个资源的n个活动组成的集合S= {a1,a2,···,an },资源每次只能由一个活动使用.每个活动ai都有

算法导论 第2章

本章主要是算法知识的基础讲解,介绍了循环不变式,几个简单的排序算法,递归分治算法等内容. 1.循环不变式 循环不变式主要用来说明算法的正确性,那么什么是循环不变式呢,其实就是在循环过程中,一些元素数据必须保持的一些性质,例如在插入排序中,数组为A,必须保证三个性质: (1) 初始化:在循环开始之前,循环不变式是成立的,即:A[0]是有序的,A[1...n-1]是无序的. (2) 保持:在循环的某一次迭代开始之前,循环不变式是成立的,那么在此次迭代结束后依然应该是成立的,即:A[0...i]是有序

排序算法的c++实现——计数排序

任何比较排序算法的时间复杂度的上限为O(NlogN), 不存在比o(nlgN)更少的比较排序算法.如果想要在时间复杂度上超过O(NlogN)的时间复杂度,肯定需要加入其它条件.计数排序就加入了限制条件,从而使时间复杂度为O(N). 计数排序的核心思想(来自算法导论):计数排序要求待排序的n个元素的大小在[0, k]之间,并且k与n在一个数量级上,即k=O(n).对于每一个输入元素x, 确定小于等于x的个数为i.利用这一信息,就可以把元素x放到输出数组的正确位置,即把元素x放到输出数组下标为i-1

算法导论学习之插入排序+合并排序

最近准备花时间把算法导论详细的看一遍,强化一下算法和数据结构的基础,将一些总结性的东西写到博客上去. 一.插入排序 算法思想:如果一个数组A,从A[1–n-1]都是有序的,然后我们将A[n]插入到A[1–n-1]的某个合适的位置上去那么就可以保证A[1–n]都是有序的.这就是插入排序的思想:具体实现的时候我们将数组的第一个元素看出有序,然后从第二个元素开始按照上面的步骤进行插入操作,直到插入最后一个元素,然后整个数组都是有序的了. 时间复杂度分析:代码中有两重for循环,很容易看出时间复杂度是n