For a given undirected graph with N vertices and E edges, please list all the connected components by both DFS and BFS. Assume that all the vertices are numbered from 0 to N-1. While searching, assume that we always start from the vertex with the smallest index, and visit its adjacent vertices in ascending order of their indices.
Input Specification:
Each input file contains one test case. For each case, the first line gives two integers N (0<N<=10) and E, which are the number of vertices and the number of edges, respectively. Then E lines follow, each described an edge by giving the two ends. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print in each line a connected component in the format "{ v1 v2 ... vk }". First print the result obtained by DFS, then by BFS.
Sample Input:
8 6 0 7 0 1 2 0 4 1 2 4 3 5
Sample Output:
{ 0 1 4 2 7 } { 3 5 } { 6 } { 0 1 2 7 4 } { 3 5 } { 6 }
这题比较水……就是写个图的DFS和BFS……当然DFS是遍历到这个点才标记该点已经被访问,并且已经访问过的点就不要再去访问了,不然如果图中有环的话就一直递归下去了,BFS的话是只要入队就把相应节点标记(不用管它有没有遍历到,因为只要入队肯定会遍历到),这样标记过的点就不用再入队了。
下面是代码:
// // main.c // List Components // // Created by 余南龙 on 2016/12/6. // Copyright ? 2016年 余南龙. All rights reserved. // #include <stdio.h> #include <string.h> #define MAXV 10000 int Graph[MAXV][MAXV]; int visit[MAXV], connected[MAXV]; int N, E, top; void DFS(int v){ int i; connected[++top] = v; visit[v] = 1; for(i = 0; i < N; i++){ if(1 == Graph[v][i]&&0 == visit[i]){ DFS(i); } } } void BFS(int v){ int Q[MAXV + 1]; int tail = -1, j = 0, i; Q[++tail] = v; visit[Q[j]] = 1; while(1){ connected[++top] = Q[j]; for(i = 0; i < N; i++){ if(1 == Graph[Q[j]][i]&&0 == visit[i]){ Q[++tail] = i; visit[i] = 1; } } j++; if(tail < j){ break; } } } void Init(){ int i, u, v; scanf("%d%d", &N, &E); for(i = 0; i < E; i++){ scanf("%d%d", &u, &v); Graph[u][v] = Graph[v][u] = 1; } } void Output(){ int i; printf("{ "); for(i = 0; i <= top; i++){ printf("%d ", connected[i]); } printf("}\n"); } int main(){ int j; Init(); memset(visit, 0, MAXV * sizeof(int)); top = -1; for(j = 0; j < N; j++){ if(0 == visit[j]){ DFS(j); Output(); top = -1; } } memset(visit, 0, MAXV * sizeof(int)); top = -1; for(j = 0; j < N; j++){ if(0 == visit[j]){ BFS(j); Output(); top = -1; } } return 0; }