数学(扩展欧几里得算法):HDU 5114 Collision

Matt is playing a naive computer game with his deeply loved pure girl.

The playground is a rectangle with walls around. Two balls are put in different positions inside the rectangle. The balls are so tiny that their volume can be ignored. Initially, two balls will move with velocity (1, 1). When a ball collides with any side of the rectangle, it will rebound without loss of energy. The rebound follows the law of refiection (i.e. the angle at which the ball is incident on the wall equals the angle at which it is reflected).

After they choose the initial position, Matt wants you to tell him where will the two balls collide for the first time.

Input

The first line contains only one integer T which indicates the number of test cases.

For each test case, the first line contains two integers x and y. The four vertices of the rectangle are (0, 0), (x, 0), (0, y) and (x, y). (1 ≤ x, y ≤ 105)

The next line contains four integers x1, y1, x2, y2. The initial position of the two balls is (x1, y1) and (x2, y2). (0 ≤ x1, x2 ≤ x; 0 ≤ y1, y2 ≤ y)

Output

For each test case, output “Case #x:” in the first line, where x is the case number (starting from 1).

In the second line, output “Collision will not happen.” (without quotes) if the collision will never happen. Otherwise, output two real numbers xc and yc, rounded to one decimal place, which indicate the position where the two balls will first collide.

Sample Input

3
10 10
1 1 9 9
10 10
0 5 5 10
10 10
1 0 1 10

Sample Output

Case #1:
6.0 6.0
Case #2:
Collision will not happen.
Case #3:
6.0 5.0

  这道题很有意思。

  为了避免小数,所有数据*2。

  这样想,分类讨论:

    1.x轴坐标相等,y轴坐标相等:直接输出此点坐标。

    2.只有一个轴坐标不等。

    3.两轴坐标都不等。

  设x1,x2为两点x坐标,x1>x2那么第一次相遇时过了tx秒,得到:

    x=x1-(x1+tx-n),x=x2+tx

  可得

    tx=n-(x1+x2)/2

  同理 ty=m-(y1+y2)/2

  若x1==x2或y1==y2,直接输出求出的ty或tx处理出的坐标即可。

  否则是第三种情况:

    由于x轴相遇周期是n秒,y轴是m秒,所以实际时间是

      t=n-(x1+x2)/2+n*a,

      t=m-(y1+y2)/2+m*b,

    用Exgcd解出来,但是要保证a>=0,b>=0,并且a最小。

  方法是……看代码吧,理由说清楚了,代码就能看懂。

 1 #include <iostream>
 2 #include <cstring>
 3 #include <cstdio>
 4 using namespace std;
 5 typedef long long LL;
 6 LL ta,tb,x,y,tim;
 7 int T,cas,n,m,x1,y1,x2,y2;
 8 LL Exgcd(LL a,LL b,LL&x,LL&y){
 9     if(b==0){x=1,y=0;return a;}
10     LL ret=Exgcd(b,a%b,y,x);
11     y-=a/b*x;return ret;
12 }
13 int main(){
14     scanf("%d",&T);
15     while(T--){
16         scanf("%d%d%d%d%d%d",&n,&m,&x1,&y1,&x2,&y2);
17         n*=2;m*=2;x1*=2;y1*=2;x2*=2;y2*=2;
18         ta=n-(x1+x2)/2;tb=m-(y1+y2)/2;
19         printf("Case #%d:\n",++cas);tim=-1;
20         if(x1==x2&&y1==y2)tim=0;
21         if(x1!=x2&&y1==y2)tim=ta;
22         if(x1==x2&&y1!=y2)tim=tb;
23         if(x1!=x2&&y1!=y2){
24             LL d=Exgcd(n,m,x,y);
25             if((tb-ta)%d==0){
26                 x=(tb-ta)/d*x;
27                 x=(x%(m/d)+m/d)%(m/d);
28                 tim=ta+n*x;
29             }
30         }
31         if(tim==-1)
32             puts("Collision will not happen.");
33         else{
34             x1=(x1+tim)%(2*n);y1=(y1+tim)%(2*m);
35             if(x1>n)x1=2*n-x1;if(y1>m)y1=2*m-y1;
36             printf("%.1f %.1f\n",x1/2.0,y1/2.0);
37         }
38     }
39     return 0;
40 }
时间: 2024-10-17 22:08:17

数学(扩展欧几里得算法):HDU 5114 Collision的相关文章

HDU - 1576 A/B(扩展欧几里得算法)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 题意:要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1). 普通版欧几里得算法(辗转相除): 1 typedef long long LL; 2 LL gcd(LL a,LL b){ 3 return (b==0) ? a : gcd(b,a%b); 4 } 扩展欧几里得算法(理论):对于不完全为0的非负整数,

扩展欧几里得算法(双六游戏)

题目大意:一个双六上面有向前 向后无限延续的格子, 每个格子都写有整数.其中0号格子是起点,1号格子是终点.而骰子上只有a,b,-a,-b四个整数,所以根据a和b的值的不同,有可能无法到达终点掷出四个整数各多少次可以到达终点呢?如果解不唯一,输出任意一组即可.如果无解 输出-1 思路:这道题用数学方法表述就是求整数x和y使得"ax+by=1",可以发现,如果gcd(a,b)不等于1,显然无解. 反之,则可以用扩展欧几里得算法来求解.  事实上,一定存在整数对(x,y)使得ax+by=g

扩展欧几里得算法的模板实现

我居然现在还记不住扩欧的板子,我太弱啦! 扩展欧几里得算法解决的是这样的问题: 给定一个不定方程组ax+by=gcd(a,b),求他的一组整数解 先给出实现代码 void exgcd(int a,int b,int &x,int &y) { if(!b) { x=1,y=0;//gcd(a,0)显然等于1*a-0*0=a return a; } int ans=exgcd(b,a%b,x,y); int tem=x; x=y; y-=tem-(a/b)*y; return ans;} 但实

欧几里得算法与扩展欧几里得算法_C++

先感谢参考文献:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 注:以下讨论的数均为整数 一.欧几里得算法(重点是证明,对后续知识有用) 欧几里得算法,也叫辗转相除,简称 gcd,用于计算两个整数的最大公约数 定义 gcd(a,b) 为整数 a 与 b 的最大公约数 引理:gcd(a,b)=gcd(b,a%b) 证明: 设 r=a%b , c=gcd(a,b) 则 a=xc , b=yc , 其中x , y互质

POJ - 1061 青蛙的约会 (扩展欧几里得算法)

Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的.为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面. 我们把这

[NOI2002] 荒岛野人 扩展欧几里得算法

[问题描述] 克里特岛以野人群居而著称.岛上有排列成环行的M个山洞.这些山洞顺时针编号为1,2,-,M.岛上住着N个野人,一开始依次住在山洞 C1,C2,-,CN中,以后每年,第i个野人会沿顺时针向前走Pi个洞住下来.每个野人i有一个寿命值Li,即生存的年数.下面四幅图描述了一个有6个 山洞,住有三个野人的岛上前四年的情况.三个野人初始的洞穴编号依次为1,2,3:每年要走过的洞穴数依次为3,7,2:寿命值依次为4,3,1.     奇怪的是,虽然野人有很多,但没有任何两个野人在有生之年处在同一个

扩展欧几里得算法(extgcd)

相信大家对欧几里得算法,即辗转相除法不陌生吧. 代码如下: int gcd(int a, int b){ return !b ? gcd(b, a % b) : a; } 而扩展欧几里得算法,顾名思义就是对欧几里得算法的扩展. 切入正题: 首先我们来看一个问题: 求整数x, y使得ax + by = 1, 如果gcd(a, b) != 1, 我们很容易发现原方程是无解的.则方程ax + by = 1有正整数对解(x, y)的必要条件是gcd(a, b) = 1,即a, b 互质. 此时正整数对解

欧几里得算法以及扩展欧几里得算法(过河noip2005提高组第二题)

欧几里得算法:也被称作辗转相除法 gcd(a,b)=gcd(b,a%b); 终止条件a=gcd b=0; (gcd为a,b的最大公约数) 扩展欧几里得算法: a 和 b 的最大公约数是 gcd ,一定能够找到这样的 x 和 y ,使得: a*x + b*y = gcd 成立 我们只需要找到特殊解x0,y0; 则通解为 x = x0 + (b/gcd)*t    y = y0 – (a/gcd)*t 那如何求出下一组解呢 仿照欧几里得算法a=b,b=a%b代入. a%b = a - (a/b)*b

扩展欧几里得算法学习记

话说以前我刷noip题的时候就想学这个东西了,结果却一直拖到了现在…… 到了高二才会这种东西的我实在是个蒟蒻啊! 将扩展欧几里得算法之前,先讲讲欧几里得算法是什么:gcd(a,b)=gcd(b,a%b).很显然是不?但我们还是要给出证明(设r=a%b): 设x是a,b的一个公约数,由于存在k使得a=k*b+r,又由于a|x,b|x,则有r|x,所以x是b,r的公约数 设x是b,r的一个公约数,因为存在k使得a=k*b+r,且b|x,r|x,那么a|x,所以x是a,b的公约数 综上所述,a和b的所

POJ 1061 青蛙绕地球约会-数论-(解一元一次同余方程+扩展欧几里得算法)

题意:两只青蛙同向跳,起点是x,y,每次分别跳m,n米,地球周长是L,求最少跳几次相遇. 分析: 把式子写好就发现是一个一元一次同余方程.用扩展欧几里得算法来求.这题很基本得会. 代码: #include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #include<string> #include<queue> #define INF 100000