题面
Sol
一种新的树上\(DP\)姿势
从左往右按链\(DP\)
做法:
维护两个栈\(S1\),\(S2\)
\(S1\)存当前的链
\(S2\)存分叉点以下要改的链
\(Dfs\),弄一个分叉点,之前的链经过它,并且另一条要转移到的链也经过它
那么每次在叶节点时就把\(S1\)最下面的一部分变成\(S2\)
转移
两种情况:
最大值在\(S1\)和在\(S2\)的情况
那么枚举\(S2\),\(S1\)中小于\(S2\)的枚举的值的点就可以转移,并维护\(S1\),\(S2\)的前缀最大值
再枚举\(S2\),利用前缀最大值,\(S1\)的大于等于\(S2\)的转移
# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
# define File(a) freopen(a".in", "r", stdin), freopen(a".out", "w", stdout)
using namespace std;
typedef long long ll;
const int _(1e5 + 5);
IL int Input(){
RG int x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
}
int n, val[_], f[_], ans = -2e9;
int fa[_], S1[_], S2[_], id[_], maxv[_];
vector <int> edge[_];
IL void Dfs(RG int u, RG int top){ //top是分叉点在S1中的位置
if(!top) S1[++S1[0]] = u, id[u] = S1[0], f[u] = val[u]; //初始第一条链
RG int l = edge[u].size();
if(l){ //非叶子节点不做更新
for(RG int i = 0; i < l; ++i){
RG int v = edge[u][i];
if(!i){ //最左边的直接加入S2
if(top) S2[++S2[0]] = v;
Dfs(v, top);
}
else S2[S2[0] = 1] = v, Dfs(v, id[u]); //新开一条链
}
return;
}
if(!top) return;
RG int mx1 = val[S1[top]], maxf = ans, now = top, mx2 = mx1;
for(RG int i = 1; i <= S2[0]; ++i){ //最大值在S2中的情况
while(now < S1[0] && val[S1[now]] <= mx1){ //计算每个最大值的贡献
mx2 = max(mx2, val[S1[now]]);
maxf = max(maxf, f[S1[++now]]);
maxv[S1[now]] = mx2; //维护S1前缀最大值
}
f[S2[i]] = maxf - mx1; //转移
maxv[S2[i]] = mx1; //维护S2前缀最大值
mx1 = max(mx1, val[S2[i]]); //下一个点
}
while(now < S1[0]){ //处理剩下的
mx2 = max(mx2, val[S1[now]]);
maxv[S1[++now]] = mx2;
}
maxf = ans, now = S1[0];
for(RG int i = S2[0]; i; --i){ //最大值在S1中的情况
while(now > top && maxv[S1[now]] >= maxv[S2[i]]){
maxf = max(maxf, f[S1[now]] - maxv[S1[now]]);
--now;
}
f[S2[i]] = max(f[S2[i]], maxf);
}
for(RG int i = 1; i <= S2[0]; ++i){ //更新到下一条链
f[S2[i]] += val[S2[i]];
S1[top + i] = S2[i];
id[S2[i]] = top + i;
}
S1[0] = top + S2[0];
}
int main(RG int argc, RG char* argv[]){
File("cut");
n = Input(), Fill(f, -127);
for(RG int i = 1, t; i <= n; ++i){
val[i] = Input(), t = Input();
for(RG int j = 1, tt; j <= t; ++j)
tt = Input(), edge[i].push_back(tt);
}
Dfs(1, 0);
for(RG int i = 1; i <= S1[0]; ++i) ans = max(ans, f[S1[i]]);
printf("%d\n", ans);
return 0;
}
原文地址:https://www.cnblogs.com/cjoieryl/p/8476899.html
时间: 2024-10-29 14:32:32