POJ 1141-Brackets Sequence(区间dp括号匹配打印路径)

题目地址:POJ 1141

题意:给出一串由‘(‘)’‘ [ ’ ’ ] ‘组成的串,将给出的括号序列以添加最小数目括号的形式进行配对。

思路:dp[i][j]表示当前子序列需要添加的最小字符数,path存储的是所有子问题的解。然后详情看代码解释。

#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <sstream>
#include <algorithm>
#include <set>
#include <queue>
#include <stack>
#include <map>
#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
typedef __int64  LL;
const int inf=0x3f3f3f3f;
const double pi= acos(-1.0);
const double esp=1e-7;
const int Maxn=110;
char str[Maxn];
int path[Maxn][Maxn];//存储的是字符区间[i,j]之间的最佳中间位置
int dp[Maxn][Maxn];
void path_printf(int i,int j)//输出子序列[i,j]的括号方案
{
    if(i>j) return;//无效位置
    if(i==j) {//子序列只有一个字符
        if(str[i]==‘[‘||str[i]==‘]‘)
            printf("[]");
        else if(str[i]==‘(‘||str[i]==‘)‘)
            printf("()");
    } else if(path[i][j]==-1) {//区间[i,j]的最外层位置匹配,递归中间的序列
        printf("%c",str[i]);
        path_printf(i+1,j-1);
        printf("%c",str[j]);
    } else {//否则递归[i,k],[k+1,j]
        path_printf(i,path[i][j]);
        path_printf(path[i][j]+1,j);
    }
}
int main()
{
    while(gets(str)) {
        int len=strlen(str);
        if(len==0) {//还有空行的时候,sad
            printf("\n");
            continue;
        }
        memset(dp,0,sizeof(dp));
        for(int i=0; i<len; i++)//单个括号的匹配
            dp[i][i]=1;
        for(int r=1; r<len; r++) {//r代表递推子序列的长度
            for(int i=0; i<len-r; i++) {//枚举子序列的开始位置
                int j=i+r;//计算子序列的结束位置
                dp[i][j]=inf;
                if((str[i]==‘(‘&&str[j]==‘)‘)||(str[i]==‘[‘&&str[j]==‘]‘))
                    if(dp[i][j]>dp[i+1][j-1]) {
                        dp[i][j]=dp[i+1][j-1];
                        path[i][j]=-1;//表示括号i,j已经匹配了
                    }
                for(int k=i; k<j; k++)//枚举中间的最佳位置
                    if(dp[i][j]>dp[i][k]+dp[k+1][j])
                        dp[i][j]=dp[i][k]+dp[k+1][j],path[i][j]=k;
            }
        }
        path_printf(0,len-1);
        puts("");
    }

    return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-11-16 06:18:23

POJ 1141-Brackets Sequence(区间dp括号匹配打印路径)的相关文章

POJ 1141 Brackets Sequence (线性dp 括号匹配 经典题)

Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 26407   Accepted: 7443   Special Judge Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a re

POJ 1141 Brackets Sequence (区间dp 记录路径)

题目大意: 给出一种不合法的括号序列,要求构造出一种合法的序列,使得填充的括号最少. 思路分析: 如果只要求输出最少的匹配括号的数量,那么就是简单的区间dp dp[i][j]表示 i - j 之间已经合法了最少添加的括号数. 转移 就是 dp[i] [j] = min  (dp[i+1][j]+1 , dp[ i+ 1] [ k -1 ] + dp[k+1] [j] (i k 位置的括号匹配)) 其次我们要记录路径,你发现  如果 dp [i] [j] 是由 dp [i+1] [j] 转移过来的

uva1626 poj 1141 Brackets Sequence 区间dp 打印路径

// poj 1141 Brackets Sequence // 也是在紫书上看的一题,uva就是多了一个t组数据. // 经典区间dp // dp(i,j)表示区间[i,j]内所需要增加的括号数目 // 则分为两种情况 // 一种是s[i]和s[j]是匹配的则 // dp[i][j] = min(dp[i][j],dp[i+1][j-1]) // 另外一种情况是不匹配 // dp[i][j] = min(dp[i][j],dp[i][k]+dp[k+1][j]){i<k<j}; // 但是无

poj 1141 Brackets Sequence (区间DP)

Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 25893   Accepted: 7295   Special Judge Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a re

poj 1141 Brackets Sequence 区间dp,分块记录

Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 35049   Accepted: 10139   Special Judge Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a r

[ACM] POJ 1141 Brackets Sequence (区间动态规划)

Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 25087   Accepted: 7069   Special Judge Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a re

poj 1141 Brackets Sequence(线性dp)

题意:给出一个括号串,求最短的满足要求的括号串: 思路:枚举长度,枚举起点和终点,找到匹配括号是可递推到子序列,枚举中间指针求最优解:打印时通过记忆表path存储最优解,递归求出最短序列: #include<cstdio> #include<cstring> #include<algorithm> #define INF 0x7fffffff using namespace std; char str[505]; int dp[505][505]; int path[5

ZOJ1463:Brackets Sequence(区间DP)

Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a regular sequence, then (S) and [S] are both regular sequences. 3. If A and B are regular sequences, then AB is a regular sequence. F

POJ #1141 - Brackets Sequence - TODO: POJ website issue

A bottom-up DP. To be honest, it is not easy to relate DP to this problem. Maybe, all "most"\"least" problems can be solved using DP.. Reference: http://blog.sina.com.cn/s/blog_8e6023de01014ptz.html There's an important details to AC: