求微分其实就是线性化,导数其实就是线性空间之间的线性变换,Jaocibian矩阵本质上就是导数。
比如,映射在处的导数就是在处的切空间到在处的切空间之间的线性映射。切空间都是矢量空间,都有基底,所以这个线性变换就是矩阵。在欧氏空间子空间的开集上,切空间就是某个,比如实轴上的切空间就是,曲面上的切空间为。这样一想,函数的导数无非就是切空间到切空间的线性变换,是一个矩阵,同构于一个实数。
因此,Jacobian矩阵实质上就是切空间之间的基底之间的线性变换,这也是为什么积分中变换坐标时前面会乘以一个Jacobian矩阵的行列式。
作者:玟清
链接:https://www.zhihu.com/question/22586361/answer/76610395
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
转自:http://jacoxu.com/jacobian%E7%9F%A9%E9%98%B5%E5%92%8Chessian%E7%9F%A9%E9%98%B5/
时间: 2024-10-03 05:46:45