Prime Ring Problem
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 25156 Accepted Submission(s): 11234
Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6 8
Sample Output
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2
</pre><pre name="code" class="cpp">#include<cstdio> #include<stdlib.h> #include<cstring> #include<algorithm> #include<iostream> using namespace std; int date[25]= {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}; int ans[25]; int n, cnt; int flag; void dfs(int step) { int temp; if(step==n) //深搜到底时注意判断首尾是否符合要求 { flag=1; temp = ans[0]+ans[n-1]; if(flag) { for(int i=2; i*i<=temp; i++) if(temp%i==0) { flag=0; break; } } if(flag) { printf("%d", ans[0]); for(int i=1; i<n; i++) printf(" %d", ans[i]); printf("\n"); } } else { for(int i=1; i<n; i++) { if(date[i]) { temp=ans[cnt-1]+date[i]; flag=1; for(int j=2; j*j<=temp; j++) { if(temp%j==0) { flag=0; break; } } if(flag) { ans[cnt++]=date[i]; date[i]=0; dfs(step+1); date[i]=ans[--cnt]; //记得将数据的还原处理 ans[cnt]=0; } } } } } int main() { int count=1; while(scanf("%d", &n)!=EOF) { memset(ans, 0, sizeof(ans)); cnt=1; ans[0]=1; printf("Case %d:\n",count++); dfs(1); //从1开始进入搜索 printf("\n"); //每次输出后记得加个换行 } return 0; }
HDU 1016:Prime Ring Problem