思路:
矩阵快速幂。
实现:
1 #include <iostream> 2 #include <cstdio> 3 #include <vector> 4 using namespace std; 5 6 typedef long long ll; 7 typedef vector<ll> vec; 8 typedef vector<vec> mat; 9 10 const int mod = 99999999; 11 12 mat mul(mat & a, mat & b) 13 { 14 mat c(a.size(), vec(b[0].size())); 15 for (int i = 0; i < a.size(); i++) 16 { 17 for (int k = 0; k < b.size(); k++) 18 { 19 for (int j = 0; j < b[0].size(); j++) 20 { 21 c[i][j] = (c[i][j] + a[i][k] * b[k][j]) % mod; 22 } 23 } 24 } 25 return c; 26 } 27 28 mat pow(mat a, ll n) 29 { 30 mat b(a.size(), vec(a.size())); 31 for (int i = 0; i < a.size(); i++) 32 { 33 b[i][i] = 1; 34 } 35 while (n > 0) 36 { 37 if (n & 1) 38 b = mul(b, a); 39 a = mul(a, a); 40 n >>= 1; 41 } 42 return b; 43 } 44 45 int main() 46 { 47 mat F(7, vec(1)); 48 F[0][0] = 6; 49 F[1][0] = 1; 50 F[2][0] = 2; 51 F[3][0] = 5; 52 F[4][0] = 4; 53 F[5][0] = 3; 54 F[6][0] = 1; 55 ll n; 56 cin >> n; 57 if (n <= 3) 58 { 59 printf("%d\n", F[3-n][0]); 60 printf("%d\n", F[5-(n-1)][0]); 61 return 0; 62 } 63 mat x(7, vec(7)); 64 for (int i = 0; i < 7; i++) 65 { 66 for (int j = 0; j < 7; j++) 67 { 68 x[i][j] = 0; 69 } 70 } 71 x[0][2] = 2; 72 x[0][3] = 1; 73 x[0][6] = 5; 74 x[1][0] = 1; 75 x[2][1] = 1; 76 x[3][0] = 1; 77 x[3][2] = 3; 78 x[3][5] = 2; 79 x[3][6] = 3; 80 x[4][3] = 1; 81 x[5][4] = 1; 82 x[6][6] = 1; 83 mat res(7, vec(7)); 84 res = pow(x, n - 3); 85 mat fuck(7, vec(1)); 86 fuck = mul(res, F); 87 printf("%d\n", fuck[0][0]); 88 printf("%d\n", fuck[3][0]); 89 return 0; 90 }
时间: 2024-10-21 04:09:02