POJ 1860 Currency Exchange BellmanFord题解

会建图,然后使用标准的Bellman Ford算法,判断负环就解决了。

不过本题实际应用不是计算负环,而是计算最大值,也就是求出源点到所有点的最大收益值之后,然后判断是否可以进一步增加收益,如果可以那么证明有环可以不断反复走这个环,不断增加收益,实际就是判负环的应用了。

#include <stdio.h>
#include <vector>
#include <string.h>
#include <algorithm>
#include <iostream>
#include <string>
#include <limits.h>
#include <stack>
#include <queue>
#include <set>
#include <map><span style="white-space:pre">	</span>
#include <float.h>
using namespace std;

const int MAX_N = 101;
int N, M, Src;
double V, dis[MAX_N];
struct Node
{
	int s, d;//source and destination vertex
	double w, c;//exchange rate and commission
};

Node gra[MAX_N<<1];

bool BellmanFord(int src, int n, double val)//n: number of edges
{
	fill(dis, dis+N+1, 0.0);
	dis[src] = val;
	for (int i = 1; i < N; i++)//标准Bellman Ford Algorithm
	{
		for (int j = 0; j < n; j++)
		{
			int u = gra[j].s, v = gra[j].d;
			if (dis[u] != 0.0)
			{
				double t = (dis[u]-gra[j].c) * gra[j].w;
				if (t > dis[v]) dis[v] = t;
			}
		}
	}

	for (int j = 0; j < n; j++)//判断负环
	{
		int u = gra[j].s, v = gra[j].d;
		if (dis[u] != 0.0)
		{
			double t = (dis[u] - gra[j].c) * gra[j].w;
			if (t > dis[v]) return true;
		}
	}
	return false;
}
int main()
{
	while (scanf("%d %d %d %lf", &N, &M, &Src, &V) != EOF)
	{
		int u, v, id = 0;
		double a, b, c, d;
		for (int i = 0; i < M; i++)
		{
			scanf("%d %d %lf %lf %lf %lf", &u, &v, &a, &b, &c, &d);
			gra[id].s = u, gra[id].d = v;
			gra[id].w = a, gra[id].c = b;
			id++;
			gra[id].s = v, gra[id].d = u;
			gra[id].w = c, gra[id].c = d;
			id++;
		}
		if (BellmanFord(Src, id, V)) puts("YES");
		else puts("NO");
	}
	return 0;
}
时间: 2024-10-03 13:47:05

POJ 1860 Currency Exchange BellmanFord题解的相关文章

poj 1860 Currency Exchange (SPFA、正权回路 bellman-ford)

链接:poj 1860 题意:给定n中货币,以及它们之间的税率,A货币转化为B货币的公式为 B=(V-Cab)*Rab,其中V为A的货币量, 求货币S通过若干此转换,再转换为原本的货币时是否会增加 分析:这个题就是判断是否存在正权回路,可以用bellman-ford算法,不过松弛条件相反 也可以用SPFA算法,判断经过转换后,转换为原本货币的值是否比原值大... bellman-ford    0MS #include<stdio.h> #include<string.h> str

poj 1860 Currency Exchange(Bellman-Ford 改)

poj 1860 Currency Exchange Description Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several

Dijkstra算法(求解单源最短路)详解 + 变形 之 poj 1860 Currency Exchange

/* 求解单源最短路问题:Dijkstra算法(该图所有边的权值非负) 关键(贪心): (1)找到最短距离已经确定的节点,从它出发更新与其相邻节点的最短距离: (2)此后不再关心(1)中“最短距离已经确定的节点”. 时间复杂度(大概的分析,不准确): “找到最短距离已经确定的节点” => O(|V|) "从它出发更新与其相邻节点的最短距离" => 邻接矩阵:O(|V|),邻接表:O(|E|) 需要循环以上两个步骤V次,所以时间复杂度:O(V^2) 即:在|E|较小的情况下,

poj 1860 Currency Exchange 解题报告

题目链接:http://poj.org/problem?id=1860 题目意思:给出 N 种 currency, M种兑换方式,Nick 拥有的的currency 编号S 以及他的具体的currency(V).M 种兑换方式中每种用6个数描述: A, B, Rab, Cab, Rba, Cba.其中,Rab: 货币A 兑换 货币B 的汇率为Rab,佣金为Cab.Rba:货币B 兑换 货币 A 的汇率,佣金为Cba.假设含有的A货币是x,那么如果兑换成B,得到的货币B 就是:(x-Cab) *

[2016-04-13][POJ][1860][Currency Exchange]

时间:2016-04-13 23:48:46 星期三 题目编号:[2016-04-13][POJ][1860][Currency Exchange] 题目大意:货币对换,问最后能否通过对换的方式使钱变多, 分析: 直接spfa判断是否存在环,如果存在那么就能无限增值 如果不存在正环,那么直接判断最终d[s] 是否 大于初始值 #include<cstdio> #include<vector> #include<cstring> #include<queue>

最短路(Bellman_Ford) POJ 1860 Currency Exchange

题目传送门 1 /* 2 最短路(Bellman_Ford):求负环的思路,但是反过来用,即找正环 3 详细解释:http://blog.csdn.net/lyy289065406/article/details/6645778 4 */ 5 #include <cstdio> 6 #include <iostream> 7 #include <algorithm> 8 #include <cstring> 9 #include <vector>

图论 --- spfa + 链式向前星 : 判断是否存在正权回路 poj 1860 : Currency Exchange

Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 19881   Accepted: 7114 Description Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and pe

poj 1860 Currency Exchange(SPFA)

题目链接:http://poj.org/problem?id=1860 Description Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can b

POJ 1860 Currency Exchange(如何Bellman-Ford算法判断正环)

题目链接: https://cn.vjudge.net/problem/POJ-1860 Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be s