1.1shelve模块
shelve 模块比pickle模块简单,只有一个open函数,返回类似字典对象,可读可写:key必须为字符串,
而值可以是python所支持的数据类型。
shelve模块主要用来存储一个简单的数据,
shelve最重要的函数是open,在调用它的时候,使用文件名作为参数,它会返回一个架子(shelf)对象,可以用它来存储类容。
1 f = shelve.open(r"shelve_test.txt") 2 # aa = {"stu1":{"name":"yj","age":19}, 3 # "stu2":{"name": "lq", "age": 20} 4 # } 类似这种方式写入到文件 5 6 # f["stu1"] = {"name":"yj","age":19} 7 # f["stu2"] = {"name":"yj","age":19} 8 print(f.get("stu1")["age"]) 9 print(f.get("stu2"))
shelve测试
1.2xml模块
xml是实现不同语言程序之间进行数据交换的协议,xml文件格式如下:
1 <data> 2 <country name="Liechtenstein"> 3 <rank updated="yes">2</rank> 4 <year>2023</year> 5 <gdppc>141100</gdppc> 6 <neighbor direction="E" name="Austria" /> 7 <neighbor direction="W" name="Switzerland" /> 8 </country> 9 <country name="Singapore"> 10 <rank updated="yes">5</rank> 11 <year>2026</year> 12 <gdppc>59900</gdppc> 13 <neighbor direction="N" name="Malaysia" /> 14 </country> 15 <country name="Panama"> 16 <rank updated="yes">69</rank> 17 <year>2026</year> 18 <gdppc>13600</gdppc> 19 <neighbor direction="W" name="Costa Rica" /> 20 <neighbor direction="E" name="Colombia" /> 21 </country> 22 </data>
1.解析XML
1 from xml.etree import ElementTree as ET 2 3 4 # 打开文件,读取XML内容 5 str_xml = open(‘xo.xml‘, ‘r‘).read() 6 7 # 将字符串解析成xml特殊对象,root代指xml文件的根节点 8 root = ET.XML(str_xml)
利用ElementTree.XML将字符串解析成xml对象
1 from xml.etree import ElementTree as ET 2 3 # 直接解析xml文件 4 tree = ET.parse("xo.xml") 5 6 # 获取xml文件的根节点 7 root = tree.getroot()
利用ElementTree.parse将文件直接解析成xml对象
2.操作xml
XML格式类型是节点嵌套节点,对于每一个节点均有以下功能,以便对当前节点进行操作
1 class Element: 2 """An XML element. 3 4 This class is the reference implementation of the Element interface. 5 6 An element‘s length is its number of subelements. That means if you 7 want to check if an element is truly empty, you should check BOTH 8 its length AND its text attribute. 9 10 The element tag, attribute names, and attribute values can be either 11 bytes or strings. 12 13 *tag* is the element name. *attrib* is an optional dictionary containing 14 element attributes. *extra* are additional element attributes given as 15 keyword arguments. 16 17 Example form: 18 <tag attrib>text<child/>...</tag>tail 19 20 """ 21 22 当前节点的标签名 23 tag = None 24 """The element‘s name.""" 25 26 当前节点的属性 27 28 attrib = None 29 """Dictionary of the element‘s attributes.""" 30 31 当前节点的内容 32 text = None 33 """ 34 Text before first subelement. This is either a string or the value None. 35 Note that if there is no text, this attribute may be either 36 None or the empty string, depending on the parser. 37 38 """ 39 40 tail = None 41 """ 42 Text after this element‘s end tag, but before the next sibling element‘s 43 start tag. This is either a string or the value None. Note that if there 44 was no text, this attribute may be either None or an empty string, 45 depending on the parser. 46 47 """ 48 49 def __init__(self, tag, attrib={}, **extra): 50 if not isinstance(attrib, dict): 51 raise TypeError("attrib must be dict, not %s" % ( 52 attrib.__class__.__name__,)) 53 attrib = attrib.copy() 54 attrib.update(extra) 55 self.tag = tag 56 self.attrib = attrib 57 self._children = [] 58 59 def __repr__(self): 60 return "<%s %r at %#x>" % (self.__class__.__name__, self.tag, id(self)) 61 62 def makeelement(self, tag, attrib): 63 创建一个新节点 64 """Create a new element with the same type. 65 66 *tag* is a string containing the element name. 67 *attrib* is a dictionary containing the element attributes. 68 69 Do not call this method, use the SubElement factory function instead. 70 71 """ 72 return self.__class__(tag, attrib) 73 74 def copy(self): 75 """Return copy of current element. 76 77 This creates a shallow copy. Subelements will be shared with the 78 original tree. 79 80 """ 81 elem = self.makeelement(self.tag, self.attrib) 82 elem.text = self.text 83 elem.tail = self.tail 84 elem[:] = self 85 return elem 86 87 def __len__(self): 88 return len(self._children) 89 90 def __bool__(self): 91 warnings.warn( 92 "The behavior of this method will change in future versions. " 93 "Use specific ‘len(elem)‘ or ‘elem is not None‘ test instead.", 94 FutureWarning, stacklevel=2 95 ) 96 return len(self._children) != 0 # emulate old behaviour, for now 97 98 def __getitem__(self, index): 99 return self._children[index] 100 101 def __setitem__(self, index, element): 102 # if isinstance(index, slice): 103 # for elt in element: 104 # assert iselement(elt) 105 # else: 106 # assert iselement(element) 107 self._children[index] = element 108 109 def __delitem__(self, index): 110 del self._children[index] 111 112 def append(self, subelement): 113 为当前节点追加一个子节点 114 """Add *subelement* to the end of this element. 115 116 The new element will appear in document order after the last existing 117 subelement (or directly after the text, if it‘s the first subelement), 118 but before the end tag for this element. 119 120 """ 121 self._assert_is_element(subelement) 122 self._children.append(subelement) 123 124 def extend(self, elements): 125 为当前节点扩展 n 个子节点 126 """Append subelements from a sequence. 127 128 *elements* is a sequence with zero or more elements. 129 130 """ 131 for element in elements: 132 self._assert_is_element(element) 133 self._children.extend(elements) 134 135 def insert(self, index, subelement): 136 在当前节点的子节点中插入某个节点,即:为当前节点创建子节点,然后插入指定位置 137 """Insert *subelement* at position *index*.""" 138 self._assert_is_element(subelement) 139 self._children.insert(index, subelement) 140 141 def _assert_is_element(self, e): 142 # Need to refer to the actual Python implementation, not the 143 # shadowing C implementation. 144 if not isinstance(e, _Element_Py): 145 raise TypeError(‘expected an Element, not %s‘ % type(e).__name__) 146 147 def remove(self, subelement): 148 在当前节点在子节点中删除某个节点 149 """Remove matching subelement. 150 151 Unlike the find methods, this method compares elements based on 152 identity, NOT ON tag value or contents. To remove subelements by 153 other means, the easiest way is to use a list comprehension to 154 select what elements to keep, and then use slice assignment to update 155 the parent element. 156 157 ValueError is raised if a matching element could not be found. 158 159 """ 160 # assert iselement(element) 161 self._children.remove(subelement) 162 163 def getchildren(self): 164 获取所有的子节点(废弃) 165 """(Deprecated) Return all subelements. 166 167 Elements are returned in document order. 168 169 """ 170 warnings.warn( 171 "This method will be removed in future versions. " 172 "Use ‘list(elem)‘ or iteration over elem instead.", 173 DeprecationWarning, stacklevel=2 174 ) 175 return self._children 176 177 def find(self, path, namespaces=None): 178 获取第一个寻找到的子节点 179 """Find first matching element by tag name or path. 180 181 *path* is a string having either an element tag or an XPath, 182 *namespaces* is an optional mapping from namespace prefix to full name. 183 184 Return the first matching element, or None if no element was found. 185 186 """ 187 return ElementPath.find(self, path, namespaces) 188 189 def findtext(self, path, default=None, namespaces=None): 190 获取第一个寻找到的子节点的内容 191 """Find text for first matching element by tag name or path. 192 193 *path* is a string having either an element tag or an XPath, 194 *default* is the value to return if the element was not found, 195 *namespaces* is an optional mapping from namespace prefix to full name. 196 197 Return text content of first matching element, or default value if 198 none was found. Note that if an element is found having no text 199 content, the empty string is returned. 200 201 """ 202 return ElementPath.findtext(self, path, default, namespaces) 203 204 def findall(self, path, namespaces=None): 205 获取所有的子节点 206 """Find all matching subelements by tag name or path. 207 208 *path* is a string having either an element tag or an XPath, 209 *namespaces* is an optional mapping from namespace prefix to full name. 210 211 Returns list containing all matching elements in document order. 212 213 """ 214 return ElementPath.findall(self, path, namespaces) 215 216 def iterfind(self, path, namespaces=None): 217 获取所有指定的节点,并创建一个迭代器(可以被for循环) 218 """Find all matching subelements by tag name or path. 219 220 *path* is a string having either an element tag or an XPath, 221 *namespaces* is an optional mapping from namespace prefix to full name. 222 223 Return an iterable yielding all matching elements in document order. 224 225 """ 226 return ElementPath.iterfind(self, path, namespaces) 227 228 def clear(self): 229 清空节点 230 """Reset element. 231 232 This function removes all subelements, clears all attributes, and sets 233 the text and tail attributes to None. 234 235 """ 236 self.attrib.clear() 237 self._children = [] 238 self.text = self.tail = None 239 240 def get(self, key, default=None): 241 获取当前节点的属性值 242 """Get element attribute. 243 244 Equivalent to attrib.get, but some implementations may handle this a 245 bit more efficiently. *key* is what attribute to look for, and 246 *default* is what to return if the attribute was not found. 247 248 Returns a string containing the attribute value, or the default if 249 attribute was not found. 250 251 """ 252 return self.attrib.get(key, default) 253 254 def set(self, key, value): 255 为当前节点设置属性值 256 """Set element attribute. 257 258 Equivalent to attrib[key] = value, but some implementations may handle 259 this a bit more efficiently. *key* is what attribute to set, and 260 *value* is the attribute value to set it to. 261 262 """ 263 self.attrib[key] = value 264 265 def keys(self): 266 获取当前节点的所有属性的 key 267 268 """Get list of attribute names. 269 270 Names are returned in an arbitrary order, just like an ordinary 271 Python dict. Equivalent to attrib.keys() 272 273 """ 274 return self.attrib.keys() 275 276 def items(self): 277 获取当前节点的所有属性值,每个属性都是一个键值对 278 """Get element attributes as a sequence. 279 280 The attributes are returned in arbitrary order. Equivalent to 281 attrib.items(). 282 283 Return a list of (name, value) tuples. 284 285 """ 286 return self.attrib.items() 287 288 def iter(self, tag=None): 289 在当前节点的子孙中根据节点名称寻找所有指定的节点,并返回一个迭代器(可以被for循环)。 290 """Create tree iterator. 291 292 The iterator loops over the element and all subelements in document 293 order, returning all elements with a matching tag. 294 295 If the tree structure is modified during iteration, new or removed 296 elements may or may not be included. To get a stable set, use the 297 list() function on the iterator, and loop over the resulting list. 298 299 *tag* is what tags to look for (default is to return all elements) 300 301 Return an iterator containing all the matching elements. 302 303 """ 304 if tag == "*": 305 tag = None 306 if tag is None or self.tag == tag: 307 yield self 308 for e in self._children: 309 yield from e.iter(tag) 310 311 # compatibility 312 def getiterator(self, tag=None): 313 # Change for a DeprecationWarning in 1.4 314 warnings.warn( 315 "This method will be removed in future versions. " 316 "Use ‘elem.iter()‘ or ‘list(elem.iter())‘ instead.", 317 PendingDeprecationWarning, stacklevel=2 318 ) 319 return list(self.iter(tag)) 320 321 def itertext(self): 322 在当前节点的子孙中根据节点名称寻找所有指定的节点的内容,并返回一个迭代器(可以被for循环)。 323 """Create text iterator. 324 325 The iterator loops over the element and all subelements in document 326 order, returning all inner text. 327 328 """ 329 tag = self.tag 330 if not isinstance(tag, str) and tag is not None: 331 return 332 if self.text: 333 yield self.text 334 for e in self: 335 yield from e.itertext() 336 if e.tail: 337 yield e.tail
xml的语法功能
由于每个节点都具有以上的方法,并且在上一步骤中解析时均得到了root(xml文件的根节点),so 可以利用以上方法进行操作xml文件。
a.遍历xml文档的所有内容
1 from xml.etree import ElementTree as ET 2 3 ############ 解析方式一 ############ 4 """ 5 # 打开文件,读取XML内容 6 str_xml = open(‘xo.xml‘, ‘r‘).read() 7 8 # 将字符串解析成xml特殊对象,root代指xml文件的根节点 9 root = ET.XML(str_xml) 10 """ 11 ############ 解析方式二 ############ 12 13 # 直接解析xml文件 14 tree = ET.parse("xo.xml") 15 16 # 获取xml文件的根节点 17 root = tree.getroot() 18 19 20 ### 操作 21 22 # 顶层标签 23 print(root.tag) 24 25 26 # 遍历XML文档的第二层 27 for child in root: 28 # 第二层节点的标签名称和标签属性 29 print(child.tag, child.attrib) 30 # 遍历XML文档的第三层 31 for i in child: 32 # 第二层节点的标签名称和内容 33 print(i.tag,i.text)
b.遍历XML中指定的节点
1 from xml.etree import ElementTree as ET 2 3 ############ 解析方式一 ############ 4 """ 5 # 打开文件,读取XML内容 6 str_xml = open(‘xo.xml‘, ‘r‘).read() 7 8 # 将字符串解析成xml特殊对象,root代指xml文件的根节点 9 root = ET.XML(str_xml) 10 """ 11 ############ 解析方式二 ############ 12 13 # 直接解析xml文件 14 tree = ET.parse("xo.xml") 15 16 # 获取xml文件的根节点 17 root = tree.getroot() 18 19 20 ### 操作 21 22 # 顶层标签 23 print(root.tag) 24 25 26 # 遍历XML中所有的year节点 27 for node in root.iter(‘year‘): 28 # 节点的标签名称和内容 29 print(node.tag, node.text)
c.修改节点内容
由于修改的节点时,均是在内存中进行,其不会影响文件中的内容。所以,如果想要修改,则需要重新将内存中的内容写到文件。
1 from xml.etree import ElementTree as ET 2 3 ############ 解析方式一 ############ 4 5 # 打开文件,读取XML内容 6 str_xml = open(‘xo.xml‘, ‘r‘).read() 7 8 # 将字符串解析成xml特殊对象,root代指xml文件的根节点 9 root = ET.XML(str_xml) 10 11 ############ 操作 ############ 12 13 # 顶层标签 14 print(root.tag) 15 16 # 循环所有的year节点 17 for node in root.iter(‘year‘): 18 # 将year节点中的内容自增一 19 new_year = int(node.text) + 1 20 node.text = str(new_year) 21 22 # 设置属性 23 node.set(‘name‘, ‘alex‘) 24 node.set(‘age‘, ‘18‘) 25 # 删除属性 26 del node.attrib[‘name‘] 27 28 29 ############ 保存文件 ############ 30 tree = ET.ElementTree(root) 31 tree.write("newnew.xml", encoding=‘utf-8‘)
解析字符串方式,修改,保存
1 from xml.etree import ElementTree as ET 2 3 ############ 解析方式二 ############ 4 5 # 直接解析xml文件 6 tree = ET.parse("xo.xml") 7 8 # 获取xml文件的根节点 9 root = tree.getroot() 10 11 ############ 操作 ############ 12 13 # 顶层标签 14 print(root.tag) 15 16 # 循环所有的year节点 17 for node in root.iter(‘year‘): 18 # 将year节点中的内容自增一 19 new_year = int(node.text) + 1 20 node.text = str(new_year) 21 22 # 设置属性 23 node.set(‘name‘, ‘alex‘) 24 node.set(‘age‘, ‘18‘) 25 # 删除属性 26 del node.attrib[‘name‘] 27 28 29 ############ 保存文件 ############ 30 tree.write("newnew.xml", encoding=‘utf-8‘)
解析2
d.删除节点
1 from xml.etree import ElementTree as ET 2 3 ############ 解析字符串方式打开 ############ 4 5 # 打开文件,读取XML内容 6 str_xml = open(‘xo.xml‘, ‘r‘).read() 7 8 # 将字符串解析成xml特殊对象,root代指xml文件的根节点 9 root = ET.XML(str_xml) 10 11 ############ 操作 ############ 12 13 # 顶层标签 14 print(root.tag) 15 16 # 遍历data下的所有country节点 17 for country in root.findall(‘country‘): 18 # 获取每一个country节点下rank节点的内容 19 rank = int(country.find(‘rank‘).text) 20 21 if rank > 50: 22 # 删除指定country节点 23 root.remove(country) 24 25 ############ 保存文件 ############ 26 tree = ET.ElementTree(root) 27 tree.write("newnew.xml", encoding=‘utf-8‘)
解析字符串方式打开,删除,保存
1 from xml.etree import ElementTree as ET 2 3 ############ 解析字符串方式打开 ############ 4 5 # 打开文件,读取XML内容 6 str_xml = open(‘xo.xml‘, ‘r‘).read() 7 8 # 将字符串解析成xml特殊对象,root代指xml文件的根节点 9 root = ET.XML(str_xml) 10 11 ############ 操作 ############ 12 13 # 顶层标签 14 print(root.tag) 15 16 # 遍历data下的所有country节点 17 for country in root.findall(‘country‘): 18 # 获取每一个country节点下rank节点的内容 19 rank = int(country.find(‘rank‘).text) 20 21 if rank > 50: 22 # 删除指定country节点 23 root.remove(country) 24 25 ############ 保存文件 ############ 26 tree = ET.ElementTree(root) 27 tree.write("newnew.xml", encoding=‘utf-8‘)
解析2
3.创建xml
1 from xml.etree import ElementTree as ET 2 3 4 # 创建根节点 5 root = ET.Element("famliy") 6 7 8 # 创建节点大儿子 9 son1 = ET.Element(‘son‘, {‘name‘: ‘儿1‘}) 10 # 创建小儿子 11 son2 = ET.Element(‘son‘, {"name": ‘儿2‘}) 12 13 # 在大儿子中创建两个孙子 14 grandson1 = ET.Element(‘grandson‘, {‘name‘: ‘儿11‘}) 15 grandson2 = ET.Element(‘grandson‘, {‘name‘: ‘儿12‘}) 16 son1.append(grandson1) 17 son1.append(grandson2) 18 19 20 # 把儿子添加到根节点中 21 root.append(son1) 22 root.append(son1) 23 24 tree = ET.ElementTree(root) 25 tree.write(‘oooo.xml‘,encoding=‘utf-8‘, short_empty_elements=False)
方式一
1 from xml.etree import ElementTree as ET 2 3 # 创建根节点 4 root = ET.Element("famliy") 5 6 7 # 创建大儿子 8 # son1 = ET.Element(‘son‘, {‘name‘: ‘儿1‘}) 9 son1 = root.makeelement(‘son‘, {‘name‘: ‘儿1‘}) 10 # 创建小儿子 11 # son2 = ET.Element(‘son‘, {"name": ‘儿2‘}) 12 son2 = root.makeelement(‘son‘, {"name": ‘儿2‘}) 13 14 # 在大儿子中创建两个孙子 15 # grandson1 = ET.Element(‘grandson‘, {‘name‘: ‘儿11‘}) 16 grandson1 = son1.makeelement(‘grandson‘, {‘name‘: ‘儿11‘}) 17 # grandson2 = ET.Element(‘grandson‘, {‘name‘: ‘儿12‘}) 18 grandson2 = son1.makeelement(‘grandson‘, {‘name‘: ‘儿12‘}) 19 20 son1.append(grandson1) 21 son1.append(grandson2) 22 23 24 # 把儿子添加到根节点中 25 root.append(son1) 26 root.append(son1) 27 28 tree = ET.ElementTree(root) 29 tree.write(‘oooo.xml‘,encoding=‘utf-8‘, short_empty_elements=False)
方式二
1 from xml.etree import ElementTree as ET 2 3 4 # 创建根节点 5 root = ET.Element("famliy") 6 7 8 # 创建节点大儿子 9 son1 = ET.SubElement(root, "son", attrib={‘name‘: ‘儿1‘}) 10 # 创建小儿子 11 son2 = ET.SubElement(root, "son", attrib={"name": "儿2"}) 12 13 # 在大儿子中创建一个孙子 14 grandson1 = ET.SubElement(son1, "age", attrib={‘name‘: ‘儿11‘}) 15 grandson1.text = ‘孙子‘ 16 17 18 et = ET.ElementTree(root) #生成文档对象 19 et.write("test.xml", encoding="utf-8", xml_declaration=True, short_empty_elements=False)
方式三
原生保存的xml是默认无缩进,如果要设置缩进的话,需要修改保存方式:
1 from xml.etree import ElementTree as ET 2 from xml.dom import minidom 3 4 5 def prettify(elem): 6 """将节点转换成字符串,并添加缩进。 7 """ 8 rough_string = ET.tostring(elem, ‘utf-8‘) 9 reparsed = minidom.parseString(rough_string) 10 return reparsed.toprettyxml(indent="\t") 11 12 # 创建根节点 13 root = ET.Element("famliy") 14 15 16 # 创建大儿子 17 # son1 = ET.Element(‘son‘, {‘name‘: ‘儿1‘}) 18 son1 = root.makeelement(‘son‘, {‘name‘: ‘儿1‘}) 19 # 创建小儿子 20 # son2 = ET.Element(‘son‘, {"name": ‘儿2‘}) 21 son2 = root.makeelement(‘son‘, {"name": ‘儿2‘}) 22 23 # 在大儿子中创建两个孙子 24 # grandson1 = ET.Element(‘grandson‘, {‘name‘: ‘儿11‘}) 25 grandson1 = son1.makeelement(‘grandson‘, {‘name‘: ‘儿11‘}) 26 # grandson2 = ET.Element(‘grandson‘, {‘name‘: ‘儿12‘}) 27 grandson2 = son1.makeelement(‘grandson‘, {‘name‘: ‘儿12‘}) 28 29 son1.append(grandson1) 30 son1.append(grandson2) 31 32 33 # 把儿子添加到根节点中 34 root.append(son1) 35 root.append(son1) 36 37 38 raw_str = prettify(root) 39 40 f = open("xxxoo.xml",‘w‘,encoding=‘utf-8‘) 41 f.write(raw_str) 42 f.close()
xml教程的:点击
1.3configparser模块
configparser主要用于配置文件分析用的
configparser用于处理特定格式的文件,本质上是利用open来操作文件
1 # 注释1 2 ; 注释2 3 4 [section1] # 节点 5 k1 = v1 # 值 6 k2:v2 # 值 7 8 [section2] # 节点 9 k1 = v1 # 值 10 11 #注释
文件格式
我用linux的yum.conf做测试
1 [main] 2 cachedir=/var/cache/yum/$basearch/$releasever 3 keepcache=0 4 debuglevel=2 5 logfile=/var/log/yum.log 6 exactarch=1 7 obsoletes=1 8 gpgcheck=1 9 plugins=1 10 installonly_limit=5 11 bugtracker_url=http://bugs.centos.org/set_project.php?project_id=23&ref=http://bugs.centos.org/bug_report_page.php?category=yum 12 distroverpkg=centos-release 13 14 15 # This is the default, if you make this bigger yum won‘t see if the metadata 16 # is newer on the remote and so you‘ll "gain" the bandwidth of not having to 17 # download the new metadata and "pay" for it by yum not having correct 18 # information. 19 # It is esp. important, to have correct metadata, for distributions like 20 # Fedora which don‘t keep old packages around. If you don‘t like this checking 21 # interupting your command line usage, it‘s much better to have something 22 # manually check the metadata once an hour (yum-updatesd will do this). 23 # metadata_expire=90m 24 25 # PUT YOUR REPOS HERE OR IN separate files named file.repo 26 # in /etc/yum.repos.d
yum.conf
1.获取所有节点
1 import configparser 2 config = configparser.ConfigParser() 3 config.read(‘yum.conf‘, encoding=‘utf-8‘) 4 ret = config.sections() 5 print(ret)
获取子节点
2.获取指定节点下所有的键值对
1 config = configparser.ConfigParser() 2 config.read(‘yum.conf‘, encoding=‘utf-8‘) 3 ret = config.items(‘main‘) 4 for i in ret: 5 print(i)
键值对
3.获取指定节点下所有的键
1 config = configparser.ConfigParser() 2 config.read(‘yum.conf‘, encoding=‘utf-8‘) 3 ret = config.options(‘main‘)#获取节点下的所有键 4 for i in ret: 5 print(i)
获取键
4。获取指定键的值
1 config = configparser.ConfigParser() 2 config.read(‘yum.conf‘, encoding=‘utf-8‘) 3 4 v = config.get(‘main‘, ‘cachedir‘) #/var/cache/yum/$basearch/$releasever 5 v1 = config.getint(‘main‘, ‘keepcache‘) #0 6 7 8 print(v) 9 print(v1)
获取指定key的值
5.检查,删除,添加节点
1 config = configparser.ConfigParser() 2 config.read(‘yum.conf‘, encoding=‘utf-8‘) 3 4 # 检查 5 has_sec = config.has_section(‘main‘) #检查文件中是否有[main]节点,返回True or False 6 print(has_sec) 7 8 # 添加节点 9 config.add_section("node1") 10 config.write(open(‘yum.conf‘, ‘w‘)) #往文件中添加一个节点[node] 11 12 13 #删除节点 节点下的内容都会被删除 14 config.remove_section("node1") 15 config.write(open(‘yum.conf‘, ‘w‘))
节点的查询,添加,删除
6.检查,删除,设置指定组内的键值对
1 config = configparser.ConfigParser() 2 config.read(‘yum.conf‘, encoding=‘utf-8‘) 3 4 # 检查 5 has_opt = config.has_option(‘main‘, ‘keepcache‘) 6 print(has_opt) 7 8 # 删除 9 config.remove_option(‘main‘, ‘keepcache‘) 10 config.write(open(‘yum.conf‘, ‘w‘)) 11 12 # 设置 13 config.set(‘main‘, ‘keepcache‘, "123") #最后添加到了该节点的末尾 14 config.write(open(‘yum.conf‘,‘w‘))
键值
用configparser生成一个文档
1 import configparser 2 3 config = configparser.ConfigParser() 4 config["DEFAULT"] = {‘ServerAliveInterval‘: ‘45‘, 5 ‘Compression‘: ‘yes‘, 6 ‘CompressionLevel‘: ‘9‘} 7 8 config[‘bitbucket.org‘] = {} 9 config[‘bitbucket.org‘][‘User‘] = ‘hg‘ 10 config[‘topsecret.server.com‘] = {} 11 topsecret = config[‘topsecret.server.com‘] 12 topsecret[‘Host Port‘] = ‘50022‘ # mutates the parser 13 topsecret[‘ForwardX11‘] = ‘no‘ # same here 14 config[‘DEFAULT‘][‘ForwardX11‘] = ‘yes‘<br> 15 with open(‘example.ini‘, ‘w‘) as configfile: 16 config.write(configfile)
demo
1.4hashlib模块
用于加密模块的操作,3.x代替了md5模块和sha模块,主要提供了SHA1,SHA224,SHA256,SHA384,SHA512,MD5的算法,
1 import hashlib 2 3 hash = hashlib.md5() 4 # ######## md5 ######## 32 5 hash.update(bytes(‘admin‘, encoding=‘utf-8‘)) 6 print(hash.hexdigest()) 7 print(hash.digest()) 8 # ######## sha512 ####### 512 9 hash = hashlib.sha512() 10 hash.update(bytes(‘admin‘, encoding=‘utf-8‘)) 11 print(hash.hexdigest())
以上的加密算法虽然非常厉害,但有时候依然存在缺陷,即:通过撞库可以反解。所以,有必要对加密算法中添加自定义key再来做加密。
1 import hashlib 2 3 # ######## sha256 ########一般都采用256算法 4 5 hash = hashlib.sha256(bytes(‘898oaFs09f‘, encoding="utf-8")) 6 hash.update(bytes(‘admin‘, encoding="utf-8")) 7 print(hash.hexdigest())
python内置还有一个 hmac 模块,它内部对我们创建 key 和 内容 进行进一步的处理然后再加密
1 import hmac 2 3 h = hmac.new(bytes(‘898oaFs09f‘, encoding="utf-8")) 4 h.update(bytes(‘admin‘, encoding="utf-8")) 5 print(h.hexdigest())
1.5logging模块
对于logging模块介绍网上很多
下面对于比较需要用的部分的一些摘录
logging模块的:官方文档
python的logging模块提供了记录程序的运行情况的日志功能。似于Apache的log4j。
Python的logging模块提供了通用的日志系统,可以方便第三方模块或者是应用使用。这个模块提供不同的日志级别,并可以采用不同的方式记录日志,比如文件,HTTP GET/POST,SMTP,Socket等,甚至可以自己实现具体的日志记录方式。
logging模块与log4j的机制是一样的,只是具体的实现细节不同。模块提供logger,handler,filter,formatter。
- logger:提供日志接口,供应用代码使用。logger最长用的操作有两类:配置和发送日志消息。可以通过logging.getLogger(name)获取logger对象,如果不指定name则返回root对象,多次使用相同的name调用getLogger方法返回同一个logger对象。
- handler:将日志记录(log record)发送到合适的目的地(destination),比如文件,socket等。一个logger对象可以通过addHandler方法添加0到多个handler,每个handler又可以定义不同日志级别,以实现日志分级过滤显示。
- filter:提供一种优雅的方式决定一个日志记录是否发送到handler。
- formatter:指定日志记录输出的具体格式。formatter的构造方法需要两个参数:消息的格式字符串和日期字符串,这两个参数都是可选的。
与log4j类似,logger,handler和日志消息的调用可以有具体的日志级别(Level),只有在日志消息的级别大于logger和handler的级别。
注:用的是centos7.2测试
测试列子
1 import logging 2 import sys 3 4 logging.basicConfig(level=logging.DEBUG, 5 format=‘%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s‘, 6 datefmt=‘%a, %d %b %Y %H:%M:%S‘, 7 filename=‘/tmp/test.log‘, 8 filemode=‘w‘) 9 10 logging.debug(‘debug message‘) 11 logging.info(‘info message‘) 12 logging.warning(‘warning message‘) 13 logging.error(‘error message‘) 14 logging.critical(‘critical message‘)
简单测试1
1 import logging 2 import sys 3 logger = logging.getLogger("endlesscode") 4 formatter = logging.Formatter(‘%(name)-12s %(asctime)s %(levelname)-8s %(message)s‘, ‘%a, %d %b %Y %H:%M:%S‘,) 5 file_handler = logging.FileHandler("test.log") 6 file_handler.setFormatter(formatter) 7 stream_handler = logging.StreamHandler(sys.stderr) 8 logger.addHandler(file_handler) 9 logger.addHandler(stream_handler) 10 #logger.setLevel(logging.ERROR) 11 logger.error("fuckgfw") 12 logger.removeHandler(stream_handler) 13 logger.error("fuckgov")
日志的格式列子2
上面的日志格式列子包含了logging的所有feature
可见在logging.basicConfig()函数中可通过具体参数来更改logging模块默认行为,可用参数有
filename:用指定的文件名创建FiledHandler,这样日志会被存储在指定的文件中。
filemode:文件打开方式,在指定了filename时使用这个参数,默认值为“a”还可指定为“w”。
format:指定handler使用的日志显示格式。
datefmt:指定日期时间格式。
level:设置rootlogger(后边会讲解具体概念)的日志级别
stream:用指定的stream创建StreamHandler。可以指定输出到sys.stderr,sys.stdout或者文件(f=open(‘test.log‘,‘w‘)),默认为sys.stderr。若同时列出了filename和stream两个参数,则stream参数会被忽略。
logger
logger.setLevel(lel):指定最低的日志级别,低于lel的级别将被忽略。debug是最低的内置级别,critical为最高
logger.addFilter(filt)、Logger.removeFilter(filt):添加或删除指定的filter
logger.addHandler(hdlr)、Logger.removeHandler(hdlr):增加或删除指定的handler
logger.debug()、Logger.info()、Logger.warning()、Logger.error()、Logger.critical():可以设置的日志级别
设置logger的level, level有以下几个级别:
DEBUG < INFO < WARNING < ERROR < CRITICAL
把loger的级别设置为INFO, 那么小于INFO级别的日志都不输出, 大于等于INFO级别的日志都输出
handlers
handler对象负责发送相关的信息到指定目的地。Python的日志系统有多种Handler可以使用。有些Handler可以把信息输出到控制台,有些Logger可以把信息输出到文件,还有些 Handler可以把信息发送到网络上。如果觉得不够用,还可以编写自己的Handler。可以通过addHandler()方法添加多个多handler
handler.setLevel(lel):指定被处理的信息级别,低于lel级别的信息将被忽略
handler.setFormatter():给这个handler选择一个格式
handler.addFilter(filt)、Handler.removeFilter(filt):新增或删除一个filter对象
Formatters
Formatter对象设置日志信息最后的规则、结构和内容,默认的时间格式为%Y-%m-%d %H:%M:%S,下面是Formatter常用的一些信息
%(name)s |
Logger的名字 |
%(levelno)s |
数字形式的日志级别 |
%(levelname)s |
文本形式的日志级别 |
%(pathname)s |
调用日志输出函数的模块的完整路径名,可能没有 |
%(filename)s |
调用日志输出函数的模块的文件名 |
%(module)s |
调用日志输出函数的模块名 |
%(funcName)s |
调用日志输出函数的函数名 |
%(lineno)d |
调用日志输出函数的语句所在的代码行 |
%(created)f |
当前时间,用UNIX标准的表示时间的浮 点数表示 |
%(relativeCreated)d |
输出日志信息时的,自Logger创建以 来的毫秒数 |
%(asctime)s |
字符串形式的当前时间。默认格式是 “2003-07-08 16:49:45,896”。逗号后面的是毫秒 |
%(thread)d |
线程ID。可能没有 |
%(threadName)s |
线程名。可能没有 |
%(process)d |
进程ID。可能没有 |
%(message)s |
用户输出的消息 |
设置过滤器
细心的朋友一定会发现前文调用logging.getLogger()时参数的格式类似于“A.B.C”。采取这样的格式其实就是为了可以配置过滤器。看一下这段代码:
LOG=logging.getLogger(”chat.gui.statistic”)
console = logging.StreamHandler()
console.setLevel(logging.INFO)
formatter = logging.Formatter(’%(asctime)s %(levelname)s %(message)s’)
console.setFormatter(formatter)
filter=logging.Filter(”chat.gui”)
console.addFilter(filter)
LOG.addHandler(console)
和前面不同的是我们在Handler上添加了一个过滤器。现在我们输出日志信息的时候就会经过过滤器的处理。名为“A.B”的过滤器只让名字带有 “A.B”前缀的Logger输出信息。可以添加多个过滤器,只要有一个过滤器拒绝,日志信息就不会被输出。另外,在Logger中也可以添加过滤器。
每个Logger可以附加多个Handler。接下来我们就来介绍一些常用的Handler:
1) logging.StreamHandler
使用这个Handler可以向类似与sys.stdout或者sys.stderr的任何文件对象(file object)输出信息。它的构造函数是:
StreamHandler([strm])
其中strm参数是一个文件对象。默认是sys.stderr
2) logging.FileHandler
和StreamHandler类似,用于向一个文件输出日志信息。不过FileHandler会帮你打开这个文件。它的构造函数是:
FileHandler(filename[,mode])
filename是文件名,必须指定一个文件名。
mode是文件的打开方式。参见Python内置函数open()的用法。默认是’a‘,即添加到文件末尾。
3) logging.handlers.RotatingFileHandler
这个Handler类似于上面的FileHandler,但是它可以管理文件大小。当文件达到一定大小之后,它会自动将当前日志文件改名,然后创建 一个新的同名日志文件继续输出。比如日志文件是chat.log。当chat.log达到指定的大小之后,RotatingFileHandler自动把 文件改名为chat.log.1。不过,如果chat.log.1已经存在,会先把chat.log.1重命名为chat.log.2。。。最后重新创建 chat.log,继续输出日志信息。它的构造函数是:
RotatingFileHandler( filename[, mode[, maxBytes[, backupCount]]])
其中filename和mode两个参数和FileHandler一样。
maxBytes用于指定日志文件的最大文件大小。如果maxBytes为0,意味着日志文件可以无限大,这时上面描述的重命名过程就不会发生。
backupCount用于指定保留的备份文件的个数。比如,如果指定为2,当上面描述的重命名过程发生时,原有的chat.log.2并不会被更名,而是被删除。
4) logging.handlers.TimedRotatingFileHandler
这个Handler和RotatingFileHandler类似,不过,它没有通过判断文件大小来决定何时重新创建日志文件,而是间隔一定时间就 自动创建新的日志文件。重命名的过程与RotatingFileHandler类似,不过新的文件不是附加数字,而是当前时间。它的构造函数是:
TimedRotatingFileHandler( filename [,when [,interval [,backupCount]]])
其中filename参数和backupCount参数和RotatingFileHandler具有相同的意义。
interval是时间间隔。
when参数是一个字符串。表示时间间隔的单位,不区分大小写。它有以下取值:
S 秒
M 分
H 小时
D 天
W 每星期(interval==0时代表星期一)
midnight 每天凌晨
5) logging.handlers.SocketHandler
6) logging.handlers.DatagramHandler
以上两个Handler类似,都是将日志信息发送到网络。不同的是前者使用TCP协议,后者使用UDP协议。它们的构造函数是:
Handler(host, port)
其中host是主机名,port是端口名
7) logging.handlers.SysLogHandler
8) logging.handlers.NTEventLogHandler
9) logging.handlers.SMTPHandler
10) logging.handlers.MemoryHandler
11) logging.handlers.HTTPHandler