The Blocks Problem |
Background
Many areas of Computer Science use simple, abstract domains for both analytical and empirical studies. For example, an early AIstudy of planning and robotics (STRIPS) used a block world in which arobot arm performed tasks involving the manipulation of blocks.
In thisproblem you will model a simple block world under certain rules andconstraints. Rather than determine how to achieve a specified state,you will ``program‘‘ a robotic arm to respond to a limited set of commands.
The Problem
The problem is to parse a series of commands that instruct a robot armin how to manipulate blocks that lie on a flat table. Initially thereare
n blocks on the table (numbered from 0 to n-1)with block bi adjacent to block
bi+1for all as shown in the diagram below:
Figure:Initial Blocks World
The valid commands for the robot arm that manipulates blocks are:
- move a onto b
where a and b are block numbers, puts block a onto block
b afterreturning any blocks that are stacked on top of blocks a and
b totheir initial positions. - move a over b
where a and b are block numbers, puts block a onto the top of thestack containing block
b, after returning any blocks that are stackedon top of block a to their initial positions. - pile a onto b
where a and b are block numbers, moves the pile of blocks consistingof block
a, and any blocks that are stacked above block a, ontoblock
b. All blocks on top of block b are moved to their initialpositions prior to the pile taking place. The blocks stacked above blocka retain their order when moved. - pile a over b
where a and b are block numbers, puts the pile of blocks consistingof block
a, and any blocks that are stacked above block a, ontothe top of the stack containing block
b. The blocks stacked above blocka retain their original order when moved. - quit
terminates manipulations in the block world.
Any command in which a = b or in which a and bare in the same stack of blocks is an illegal command. All illegalcommands should be ignored and should have noaffect on the configuration of blocks.
The Input
The input begins with an integer n on a line by itself representingthe number of blocks in the block world. You may assume that 0 <
n <25.
The number of blocks is followed by a sequence of block commands, onecommand per line. Yourprogram should process all commands until the
quit command isencountered.
You may assume that all commands will be of the form specified above.There will be no syntactically incorrect commands.
The Output
The output should consist of the final state of the blocks world. Eachoriginal block position numbered
i (where
n is the number of blocks) should appearfollowed immediately by a colon.If there is at least a blockon it, the colon must be followed by one space, followed by a list of blocks that appear stacked in that position with each block number separated from
other block numbers by a space. Don‘t put any trailing spaces on a line.
There should be one line of output for each block position(i.e., n lines of output where
n is the integer on the first line of input).
Sample Input
10 move 9 onto 1 move 8 over 1 move 7 over 1 move 6 over 1 pile 8 over 6 pile 8 over 5 move 2 over 1 move 4 over 9 quit
Sample Output
0: 0 1: 1 9 2 4 2: 3: 3 4: 5: 5 8 7 6 6: 7: 8: 9:
Miguel Revilla
2000-04-06
题目的意思是: 有一排过去n个木块,按指令移动木块;
move a over b:
在木块a所在的那一堆木块,把a上面的的木块全部放回原地,然后把a放到b所在那堆木块上面。。
move a onto b:
把a所在的那堆木块,a上面的全部放回原处,b所在的那堆也是一样,把b上面的木块都放回原处,然后把a放到b上面;
pile a over b:
把a所在的那一堆木块,a上面的全部木块包括a ,都移到b所在的那堆木块上面。
pile a onto b:
把b所在那堆木块,在b上面的木块全都放回原处,并把a所在的那堆木块a上面的全部移到b上面。。
总的来说就是碰到move就要把a上面的全部放回原处。如果碰到 onto 就要把b上面的全部放到原处。
因为move是只移动a一个,所以a上面的要归位,而pile是移一堆,所以不用。
onto是要和b贴在一起,所以b上面的要归位,而over是上方,不需要直接接触,所以不用。。
思路就是用栈来模拟,一开始就是n个栈。每个栈里都是一个元素,然后按照指令移,在这个栈里pop()掉它,在另一个栈里push()进去。。
分四种情况来做移动,每种情况处理方式不一样。要注意如果是一堆移过去,因为还是要按照这个顺序,多以要先把这一堆放到另一个数组,再按顺序pushj进去。
模拟完输出即可。。
AC代码:
#include<iostream> #include<stdio.h> #include<string> #include<stack> using namespace std; int main () { stack <int> sta[100]; int t; int num[100]; int res[100]; string m1,m2; int p1,p2; cin >> t; getchar(); for( int i = 0; i < t ;i++) { sta[i].push(i); num[i] = i; } while(1) { cin >> m1; if(m1 == "quit") break; cin >>p1 >>m2 >>p2; if (num[p1] == num[p2]) continue; if (m1 == "move" && m2 == "over") { for (;sta[num[p1]].top() != p1; ) { sta[ sta[num[p1]].top() ].push(sta[num[p1]].top()); num[sta[num[p1]].top()] = sta[num[p1]].top(); sta[num[p1]].pop(); } sta[num[p2]].push(p1); sta[num[p1]].pop(); num[p1] = num[p2]; } if (m1 == "pile" && m2 == "over") { int k = 0; int temp[200]; for (;sta[num[p1]].top() != p1; ) { temp[k++] = sta[num[p1]].top(); num[sta[num[p1]].top()] = num[p2]; sta[num[p1]].pop(); } sta[num[p1]].pop(); temp[k] = p1; num[p1] = num[p2]; for(int w = k ;w >= 0; w--) sta[num[p2]].push(temp[w]); } if (m1 == "move" && m2 == "onto") { for (;sta[num[p1]].top() != p1; ) { sta[ sta[num[p1]].top() ].push(sta[num[p1]].top()); num[sta[num[p1]].top()] = sta[num[p1]].top(); sta[num[p1]].pop(); } for (;sta[num[p2]].top() != p2; ) { sta[ sta[num[p2]].top() ].push(sta[num[p2]].top()); num[sta[num[p2]].top()] = sta[num[p2]].top(); sta[num[p2]].pop(); } sta[num[p2]].push(sta[num[p1]].top()); sta[num[p1]].pop(); num[p1] = num[p2]; } if (m1 == "pile" && m2 == "onto") { int k = 0; int temp[200]; for (;sta[num[p1]].top() != p1; ) { temp[k++] = sta[num[p1]].top(); num[sta[num[p1]].top()] = num[p2]; sta[num[p1]].pop(); } sta[num[p1]].pop(); temp[k] = p1; num[p1] =num[p2]; for (;sta[num[p2]].top() != p2; ) { sta[ sta[num[p2]].top() ].push(sta[num[p2]].top()); num[sta[num[p2]].top()] = sta[num[p2]].top(); sta[num[p2]].pop(); } for(int w = k ;w >= 0; w--) sta[num[p2]].push(temp[w]); } } int j; for(int i = 0;i < t;i++) { cout << i <<":"; for( j = 0 ;!sta[i].empty();j++) { res[j] = sta[i].top(); sta[i].pop(); } for (j = j -1; j >= 0;j--) cout<<" "<<res[j]; cout << endl; } return 0; }