首先介绍一下泰勒公式,它的实质就是用某个函数临近的点和导数来近似该点的函数值。
接下来求三角函数在x=0处的泰勒公式(sin(0)=0,cos(0)=1)
Sin(x)’ |
Sin(x)’’ |
Sin(x)’’’ |
Sin(x)’’’’ |
Cos(x)’ |
Cos(x)’’ |
Cos(x)’’’ |
Cos(x)’’’’ |
Cos(x) |
-Sin(x) |
-Cos(x) |
Sin(x) |
-Sin(x) |
-Cos(x) |
Sin(x) |
Cos(x) |
1 |
0 |
-1 |
0 |
0 |
-1 |
0 |
1 |
则可以知道以下结论,即泰勒恒等式
时间: 2024-10-03 00:36:22