复分析中的欧拉恒等式

首先介绍一下泰勒公式,它的实质就是用某个函数临近的点和导数来近似该点的函数值。

接下来求三角函数在x=0处的泰勒公式(sin(0)=0,cos(0)=1)


Sin(x)’


Sin(x)’’


Sin(x)’’’


Sin(x)’’’’


Cos(x)’


Cos(x)’’


Cos(x)’’’


Cos(x)’’’’


Cos(x)


-Sin(x)


-Cos(x)


Sin(x)


-Sin(x)


-Cos(x)


Sin(x)


Cos(x)


1


0


-1


0


0


-1


0


1

则可以知道以下结论,即泰勒恒等式

时间: 2024-10-03 00:36:22

复分析中的欧拉恒等式的相关文章

《University Calculus》-chape8-无穷序列和无穷级数-欧拉恒等式

写在前面:写在前面的当然是对大天朝教材的吐槽啦. 曾记否,高中所学虚数和复平面的概念,如此虚无的概念到了大学一门叫<模拟电子技术>的课程中居然明目张胆的开始进行计算! 曾记否,高中的指对运算,他们老师由于不想说话就向我们扔了一个自然对数e! 其实很多人觉得数学抽象.晦涩而且无章可循,其实这都是假想,如果真的有这种感觉,很大程度上是教科书在编排顺序上有瑕疵.数学本身是语言,描述自然的语言,因此在每个概念.公式的背后,往往都需要(或者说必然)对应着现实模型,因此在学习新的概念的时候,考察它的现实意

欧拉函数

void Euler_Sieve_Method(int * euler, int n) { euler[1] = 1; for (int i = 2; i < n; i++) { euler[i] = i; } for (int i = 2; i < n; i++) { if (euler[i] == i) { for (int j = i; j < n; j += i) { euler[j] = euler[j] / i * (i - 1); } } } } void Euler_Si

图论&#183;欧拉迹

欧拉路径或者欧拉回路都要求经过给定图$G$中所有边恰好一次,在此之上欧拉回路还要求路径是闭合的,即能找到一条从某点出发并以此点为终点的欧拉路径.二者均称为欧拉迹.对于无向图,存在欧拉迹当且仅当图中度数为奇数的结点数目为$0$或$2$.如果图$G$中所有结点度数均为偶数,那么图中的所有欧拉迹均为欧拉回路:而如果度数为奇数的结点数目恰好为$2$,则图中所有欧拉迹均为非闭合的欧拉路径. 下面给出一些摘自wiki关于欧拉迹的性质: 一个无向图能够被分解成若干个边集互不相交的环当且仅当图中所有结点度数均为

【转】欧拉函数

链接:http://www.cnblogs.com/yefeng1627/archive/2013/01/02/2842492.html 欧拉函数直接计算公式 欧拉函数的定义: E(N)= (  区间[1,N-1] 中与 N 互质的整数个数). 对于 积性函数 F(X*Y),当且仅当 GCD(X,Y)= 1 时, F(X*Y) = F(X)* F(Y) 任意整数可因式分解为如下形式:      其中( p1, p2 ... pk 为质数, ei 为次数 ) 所以 因为 欧拉函数 E(X)为积性函

poj 2154 Color(polya计数 + 欧拉函数优化)

http://poj.org/problem?id=2154 大致题意:由n个珠子,n种颜色,组成一个项链.要求不同的项链数目,旋转后一样的属于同一种,结果模p. n个珠子应该有n种旋转置换,每种置换的循环个数为gcd(i,n).如果直接枚举i,显然不行.但是我们可以缩小枚举的数目.改为枚举每个循环节的长度L,那么相应的循环节数是n/L.所以我们只需求出每个L有多少个i满足gcd(i,n)= n/L,就得到了循环节数为n/L的个数.重点就是求出这样的i的个数. 令cnt = gcd(i,n) =

Euler-Maruyama discretization(&quot;欧拉-丸山&quot;数值解法)

欧拉法的来源 在数学和计算机科学中,欧拉方法(Euler method)命名自它的发明者莱昂哈德·欧拉,是一种一阶数值方法,用以对给定初值的常微分方程(即初值问题)求解.它是一种解决常微分方程数值积分的最基本的一类显型方法(Explicit method). [编辑] 什么是欧拉法 欧拉法是以流体质点流经流场中各空间点的运动即以流场作为描述对象研究流动的方法.--流场法 它不直接追究质点的运动过程,而是以充满运动液体质点的空间--流场为对象.研究各时刻质点在流场中的变化规律.将个别流体质点运动过

The Euler function(欧拉函数筛)

这题用欧拉函数会超时,要用函数筛. 解析:(转) 定义:对于正整数n,φ(n)是小于或等于n的正整数中,与n互质的数的数目. 例如:φ(8)=4,因为1,3,5,7均和8互质. 性质:1.若p是质数,φ(p)= p-1. 2.若n是质数p的k次幂,φ(n)=(p-1)*p^(k-1).因为除了p的倍数都与n互质 3.欧拉函数是积性函数,若m,n互质,φ(mn)= φ(m)φ(n). 根据这3条性质我们就可以推出一个整数的欧拉函数的公式.因为一个数总可以写成一些质数的乘积的形式. E(k)=(p1

欧拉函数o(n)求素数

欧拉函数的定义: E(N)= ( 区间[1,N-1] 中与 N 互质的整数个数). 对于 积性函数 F(X*Y),当且仅当 GCD(X,Y)= 1 时, F(X*Y) = F(X)* F(Y) 任意整数可因式分解为如下形式: 其中( p1, p2 - pk 为质数, ei 为次数 ) 所以 因为 欧拉函数 E(X)为积性函数, 所以 对于 , 我们知道 因为pi 为质数,所以 [ 1, pi-1 ] 区间的数都与 pi 互质 对于 区间[ 1, ] ,共有 个数, 因为 只有一个质因子, 所以与

(hdu step 7.2.1)The Euler function(欧拉函数模板题——求phi[a]到phi[b]的和)

题目: The Euler function Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 166 Accepted Submission(s): 96   Problem Description The Euler function phi is an important kind of function in number theory